cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326873 BII-numbers of connectedness systems without singletons.

Original entry on oeis.org

0, 4, 16, 32, 64, 68, 80, 84, 96, 100, 112, 116, 256, 288, 512, 528, 1024, 1028, 1280, 1284, 1536, 1540, 1792, 1796, 2048, 2052, 4096, 4112, 4352, 4368, 6144, 6160, 6400, 6416, 8192, 8224, 8704, 8736, 10240, 10272, 10752, 10784, 16384, 16388, 16400, 16416
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is given by A326877.

Examples

			The sequence of all connectedness systems without singletons together with their BII-numbers begins:
     0: {}
     4: {{1,2}}
    16: {{1,3}}
    32: {{2,3}}
    64: {{1,2,3}}
    68: {{1,2},{1,2,3}}
    80: {{1,3},{1,2,3}}
    84: {{1,2},{1,3},{1,2,3}}
    96: {{2,3},{1,2,3}}
   100: {{1,2},{2,3},{1,2,3}}
   112: {{1,3},{2,3},{1,2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   256: {{1,4}}
   288: {{2,3},{1,4}}
   512: {{2,4}}
   528: {{1,3},{2,4}}
  1024: {{1,2,4}}
  1028: {{1,2},{1,2,4}}
  1280: {{1,4},{1,2,4}}
  1284: {{1,2},{1,4},{1,2,4}}
		

Crossrefs

Connectedness systems without singletons are counted by A072446, with unlabeled case A072444.
Connectedness systems are counted by A326866, with unlabeled case A326867.
BII-numbers of connectedness systems are A326872.
The connected case is A326879.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connnosQ[eds_]:=!MemberQ[Length/@eds,1]&&SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,1000],connnosQ[bpe/@bpe[#]]&]