This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326875 #10 Mar 06 2025 21:02:12 %S A326875 0,1,2,4,5,6,7,8,16,17,24,25,32,34,40,42,64,65,66,68,69,70,71,72,76, %T A326875 80,81,82,84,85,86,87,88,89,92,93,96,97,98,100,101,102,103,104,106, %U A326875 108,110,112,113,114,116,117,118,119,120,121,122,124,125,126,127,128 %N A326875 BII-numbers of set-systems that are closed under union. %C A326875 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %C A326875 The enumeration of these set-systems by number of covered vertices is A102896. %H A326875 John Tyler Rascoe, <a href="/A326875/b326875.txt">Table of n, a(n) for n = 1..3000</a> %e A326875 The sequence of all set-systems that are closed under union together with their BII-numbers begins: %e A326875 0: {} %e A326875 1: {{1}} %e A326875 2: {{2}} %e A326875 4: {{1,2}} %e A326875 5: {{1},{1,2}} %e A326875 6: {{2},{1,2}} %e A326875 7: {{1},{2},{1,2}} %e A326875 8: {{3}} %e A326875 16: {{1,3}} %e A326875 17: {{1},{1,3}} %e A326875 24: {{3},{1,3}} %e A326875 25: {{1},{3},{1,3}} %e A326875 32: {{2,3}} %e A326875 34: {{2},{2,3}} %e A326875 40: {{3},{2,3}} %e A326875 42: {{2},{3},{2,3}} %e A326875 64: {{1,2,3}} %e A326875 65: {{1},{1,2,3}} %e A326875 66: {{2},{1,2,3}} %e A326875 68: {{1,2},{1,2,3}} %e A326875 69: {{1},{1,2},{1,2,3}} %e A326875 70: {{2},{1,2},{1,2,3}} %e A326875 71: {{1},{2},{1,2},{1,2,3}} %e A326875 72: {{3},{1,2,3}} %e A326875 76: {{1,2},{3},{1,2,3}} %e A326875 80: {{1,3},{1,2,3}} %e A326875 81: {{1},{1,3},{1,2,3}} %e A326875 82: {{2},{1,3},{1,2,3}} %e A326875 84: {{1,2},{1,3},{1,2,3}} %e A326875 85: {{1},{1,2},{1,3},{1,2,3}} %e A326875 86: {{2},{1,2},{1,3},{1,2,3}} %t A326875 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326875 Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union@@@Tuples[bpe/@bpe[#],2]]&] %o A326875 (Python) %o A326875 from itertools import count, islice, combinations %o A326875 def bin_i(n): #binary indices %o A326875 return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) %o A326875 def a_gen(): %o A326875 for n in count(0): %o A326875 E,f = [bin_i(k) for k in bin_i(n)],0 %o A326875 for i in combinations(E,2): %o A326875 if list(set(i[0])|set(i[1])) not in E: %o A326875 f += 1 %o A326875 break %o A326875 if f < 1: %o A326875 yield n %o A326875 A326875_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, Mar 06 2025 %Y A326875 Cf. A006126, A048793, A102894, A102896, A102897, A326031, A326872, A326874, A326876, A326880. %K A326875 nonn,base %O A326875 1,3 %A A326875 _Gus Wiseman_, Jul 29 2019