This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326876 #8 Jul 31 2019 08:48:43 %S A326876 0,1,2,4,5,6,7,8,16,17,24,25,32,34,40,42,64,65,66,68,69,70,71,72,76, %T A326876 80,81,82,85,87,88,89,93,96,97,98,102,103,104,106,110,120,121,122,127, %U A326876 128,256,257,384,385,512,514,640,642,1024,1025,1026,1028,1029,1030 %N A326876 BII-numbers of finite topologies without their empty set. %C A326876 A finite topology is a finite set of finite sets closed under union and intersection and containing {} and the vertex set. %C A326876 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. %C A326876 The enumeration of finite topologies by number of points is given by A000798. %H A326876 Wikipedia <a href="https://en.wikipedia.org/wiki/Topological_space">Topological space</a> %e A326876 The sequence of all finite topologies without their empty set together with their BII-numbers begins: %e A326876 0: {} %e A326876 1: {{1}} %e A326876 2: {{2}} %e A326876 4: {{1,2}} %e A326876 5: {{1},{1,2}} %e A326876 6: {{2},{1,2}} %e A326876 7: {{1},{2},{1,2}} %e A326876 8: {{3}} %e A326876 16: {{1,3}} %e A326876 17: {{1},{1,3}} %e A326876 24: {{3},{1,3}} %e A326876 25: {{1},{3},{1,3}} %e A326876 32: {{2,3}} %e A326876 34: {{2},{2,3}} %e A326876 40: {{3},{2,3}} %e A326876 42: {{2},{3},{2,3}} %e A326876 64: {{1,2,3}} %e A326876 65: {{1},{1,2,3}} %e A326876 66: {{2},{1,2,3}} %e A326876 68: {{1,2},{1,2,3}} %e A326876 69: {{1},{1,2},{1,2,3}} %t A326876 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326876 Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&] %Y A326876 Cf. A000798, A001930, A003465, A048793, A102894, A102896, A326031, A326872, A326875, A326878. %K A326876 nonn %O A326876 1,3 %A A326876 _Gus Wiseman_, Jul 29 2019