This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326882 #20 Feb 26 2020 13:38:30 %S A326882 1,0,1,0,1,2,1,0,1,6,9,6,6,0,1,0,1,14,43,60,72,54,54,20,24,0,12,0,0,0, %T A326882 1,0,1,30,165,390,630,780,955,800,900,500,660,240,390,120,190,10,100, %U A326882 0,60,0,0,0,20,0,0,0,0,0,0,0,1 %N A326882 Irregular triangle read by rows where T(n,k) is the number of finite topologies with n points and k nonempty open sets, 0 <= k <= 2^n - 1. %H A326882 Andrew Howroyd, <a href="/A326882/b326882.txt">Table of n, a(n) for n = 0..254</a> %H A326882 Wikipedia, <a href="https://en.wikipedia.org/wiki/Topological_space">Topological space</a> %e A326882 Triangle begins: %e A326882 1 %e A326882 0 1 %e A326882 0 1 2 1 %e A326882 0 1 6 9 6 6 0 1 %e A326882 0 1 14 43 60 72 54 54 20 24 0 12 0 0 0 1 %e A326882 Row n = 3 counts the following topologies: %e A326882 {}{123} {}{1}{123} {}{1}{12}{123} {}{1}{2}{12}{123} {}{1}{2}{12}{13}{123} %e A326882 {}{2}{123} {}{1}{13}{123} {}{1}{3}{13}{123} {}{1}{2}{12}{23}{123} %e A326882 {}{3}{123} {}{1}{23}{123} {}{2}{3}{23}{123} {}{1}{3}{12}{13}{123} %e A326882 {}{12}{123} {}{2}{12}{123} {}{1}{12}{13}{123} {}{1}{3}{13}{23}{123} %e A326882 {}{13}{123} {}{2}{13}{123} {}{2}{12}{23}{123} {}{2}{3}{12}{23}{123} %e A326882 {}{23}{123} {}{2}{23}{123} {}{3}{13}{23}{123} {}{2}{3}{13}{23}{123} %e A326882 {}{3}{12}{123} %e A326882 {}{3}{13}{123} {}{1}{2}{3}{12}{13}{23}{123} %e A326882 {}{3}{23}{123} %t A326882 Table[Length[Select[Subsets[Subsets[Range[n]],{k}],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4},{k,2^n}] %Y A326882 Row lengths are A000079. %Y A326882 Row sums are A000798. %Y A326882 Cf. A001930, A014466, A102894, A102895, A102896, A102897, A306445, A326876, A326878, A326881. %Y A326882 Columns: A281774 and refs therein. %K A326882 nonn,tabf,nice %O A326882 0,6 %A A326882 _Gus Wiseman_, Aug 01 2019 %E A326882 Terms a(31) and beyond from _Andrew Howroyd_, Aug 10 2019