cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326885 E.g.f.: Product_{k>=1} 1/(1 - k*(exp(x)-1)^k).

This page as a plain text file.
%I A326885 #7 Jul 31 2019 16:33:50
%S A326885 1,1,7,55,595,7351,110587,1884415,36154195,771983911,18141124267,
%T A326885 463345240975,12792709110595,379854657215671,12057296962232347,
%U A326885 407072488594360735,14565548824196479795,550582832110097346631,21917855760706255154827,916261422041320023467695
%N A326885 E.g.f.: Product_{k>=1} 1/(1 - k*(exp(x)-1)^k).
%H A326885 Vaclav Kotesovec, <a href="/A326885/b326885.txt">Table of n, a(n) for n = 0..400</a>
%F A326885 a(n) = Sum_{k=0..n} A006906(k)*Stirling2(n,k)*k!.
%F A326885 a(n) ~ c * n! / ((3^(2/3) - 2) * (3^(2/3) - 1) * log(1 + 3^(-1/3))^(n+1)), where c = Product_{k>=4} 1/(1 - k/3^(k/3)) = 3468.14377687388560106742710672518465524...
%t A326885 nmax = 20; CoefficientList[Series[Product[1/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A326885 Cf. A006906, A167137, A305986, A326884.
%K A326885 nonn
%O A326885 0,3
%A A326885 _Vaclav Kotesovec_, Jul 31 2019