This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326886 #7 Jul 31 2019 16:33:43 %S A326886 1,2,14,134,1574,22262,370694,7008374,147805574,3447703862, %T A326886 88047037574,2438080410614,72703788119174,2321967591003062, %U A326886 79030014919422854,2854499200663284854,109018338380110506374,4388176453133542327862,185612789014681549094534 %N A326886 E.g.f.: Product_{k>=1} (1 + k*(exp(x)-1)^k) / (1 - k*(exp(x)-1)^k). %H A326886 Vaclav Kotesovec, <a href="/A326886/b326886.txt">Table of n, a(n) for n = 0..400</a> %F A326886 a(n) = Sum_{k=0..n} A265758(k)*Stirling2(n,k)*k!. %F A326886 a(n) ~ c * 2 * (3^(2/3) + 2) * n! / (3*(3^(2/3) - 2) * (3^(1/3) - 1) * log(1 + 3^(-1/3))^(n+1)), where c = Product_{k>=4} (1 + k/3^(k/3)) / (1 - k/3^(k/3)) = 153073.83255100475812062139772279157814388739... %t A326886 nmax = 20; CoefficientList[Series[Product[(1+k*(Exp[x]-1)^k)/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! %Y A326886 Cf. A265758, A306045, A326884, A326885, A326887. %K A326886 nonn %O A326886 0,2 %A A326886 _Vaclav Kotesovec_, Jul 31 2019