cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326887 E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).

This page as a plain text file.
%I A326887 #8 Jul 31 2019 12:37:21
%S A326887 1,2,8,48,364,3320,35464,433692,5962548,90931152,1522657264,
%T A326887 27765229844,547487475484,11604952395816,263091290017560,
%U A326887 6351255101776812,162643987129698628,4403250400372110656,125649232950852714496,3769013390615951560068,118555772298034094231724
%N A326887 E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).
%H A326887 Vaclav Kotesovec, <a href="/A326887/b326887.txt">Table of n, a(n) for n = 0..420</a>
%F A326887 a(n) = Sum_{k=0..n} A305199(k)*Stirling2(n,k).
%F A326887 a(n) ~ n * (n+1)! / (16 * exp(2*gamma) * log(2)^(n+3)), where gamma is the Euler-Mascheroni constant A001620.
%t A326887 nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k/k)/(1-(Exp[x]-1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A326887 Cf. A305199, A305986, A305987.
%K A326887 nonn
%O A326887 0,2
%A A326887 _Vaclav Kotesovec_, Jul 31 2019