This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326890 #38 Apr 16 2022 15:03:39 %S A326890 1,3,8,12,26,33,62,899,1288,3382,3803,17161,97280,208678,368382, %T A326890 45898152,55785549,65463721 %N A326890 Successive positive minima of Gram's points g(n) of the Riemann zeta function. %C A326890 Gram's points occur when the imaginary part of Riemann zeta function is zero but the real part isn't zero. %C A326890 For very small values of Gram's points the distance between nearest zero of Riemann zeta function is very small. %C A326890 For successive negative minima of Gram's points g(n) of the Riemann zeta function see A326891. %C A326890 a(16)-a(18) follow Korolev 2014. %H A326890 M. A. Korolev, <a href="https://doi.org/10.4213/sm8253">On small values of the Riemann zeta-function at Gram points</a>, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian. <a href="https://doi.org/10.1070/SM2014v205n01ABEH004367">In English</a>. %e A326890 n | a(n) | g(a(n)) = Zeta value %e A326890 ---+--------+--------------------- %e A326890 1 | 1 | 1.457427047874012250 %e A326890 2 | 3 | 0.925264643315366642 %e A326890 3 | 8 | 0.688292371691853238 %e A326890 4 | 12 | 0.538585793754601351 %e A326890 5 | 26 | 0.491521463374527648 %e A326890 6 | 33 | 0.14158237349601719 %e A326890 7 | 62 | 0.00818833702586957 %e A326890 8 | 899 | 0.00443821005886578 %e A326890 9 | 1288 | 0.003877434204568 %e A326890 10 | 3382 | 0.000203064538534 %e A326890 11 | 3803 | 0.000137683252272 %e A326890 12 | 17161 | 0.00011012022914 %e A326890 13 | 97280 | 0.0000123785958 %e A326890 14 | 208678 | 0.000010257478 %e A326890 15 | 368382 | 0.0000000890976 %t A326890 ff = 10; aa = {}; Do[ kk = Re[Zeta[1/2 + I N[ InverseFunction[ RiemannSiegelTheta][n Pi], 10]]]; If[(kk > 0) && (kk < ff), AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa %Y A326890 Cf. A114856, A254297, A255739, A255742, A326502. %K A326890 nonn,more %O A326890 1,2 %A A326890 _Artur Jasinski_, Sep 13 2019