cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326890 Successive positive minima of Gram's points g(n) of the Riemann zeta function.

This page as a plain text file.
%I A326890 #38 Apr 16 2022 15:03:39
%S A326890 1,3,8,12,26,33,62,899,1288,3382,3803,17161,97280,208678,368382,
%T A326890 45898152,55785549,65463721
%N A326890 Successive positive minima of Gram's points g(n) of the Riemann zeta function.
%C A326890 Gram's points occur when the imaginary part of Riemann zeta function is zero but the real part isn't zero.
%C A326890 For very small values of Gram's points the distance between nearest zero of Riemann zeta function is very small.
%C A326890 For successive negative minima of Gram's points g(n) of the Riemann zeta function see A326891.
%C A326890 a(16)-a(18) follow Korolev 2014.
%H A326890 M. A. Korolev, <a href="https://doi.org/10.4213/sm8253">On small values of the Riemann zeta-function at Gram points</a>, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian. <a href="https://doi.org/10.1070/SM2014v205n01ABEH004367">In English</a>.
%e A326890    n |  a(n)  | g(a(n)) = Zeta value
%e A326890   ---+--------+---------------------
%e A326890    1 |      1 | 1.457427047874012250
%e A326890    2 |      3 | 0.925264643315366642
%e A326890    3 |      8 | 0.688292371691853238
%e A326890    4 |     12 | 0.538585793754601351
%e A326890    5 |     26 | 0.491521463374527648
%e A326890    6 |     33 | 0.14158237349601719
%e A326890    7 |     62 | 0.00818833702586957
%e A326890    8 |    899 | 0.00443821005886578
%e A326890    9 |   1288 | 0.003877434204568
%e A326890   10 |   3382 | 0.000203064538534
%e A326890   11 |   3803 | 0.000137683252272
%e A326890   12 |  17161 | 0.00011012022914
%e A326890   13 |  97280 | 0.0000123785958
%e A326890   14 | 208678 | 0.000010257478
%e A326890   15 | 368382 | 0.0000000890976
%t A326890 ff = 10; aa = {}; Do[ kk = Re[Zeta[1/2 + I N[ InverseFunction[ RiemannSiegelTheta][n Pi], 10]]]; If[(kk > 0) && (kk < ff), AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa
%Y A326890 Cf. A114856, A254297, A255739, A255742, A326502.
%K A326890 nonn,more
%O A326890 1,2
%A A326890 _Artur Jasinski_, Sep 13 2019