This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326891 #24 Apr 16 2022 15:04:00 %S A326891 126,134,777,1165,2808,3782,12174,14374,23149,60780,117807,126085 %N A326891 Successive negative minima of Gram's points g(n) of the Riemann zeta function. %C A326891 This sequence is subset of A114856. %C A326891 Gram's points occur when the imaginary part of Riemann zeta function is zero but the real part isn't zero. %C A326891 For very small values of Gram's points, the distance between nearest zero of Riemann zeta function is very small. %C A326891 For successive positive minima of Gram's points g(n) of the Riemann zeta function see A326890. %H A326891 M. A. Korolev, <a href="https://doi.org/10.4213/sm8253">On small values of the Riemann zeta-function at Gram points</a>, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian. %e A326891 n | a(n) | g(a(n)) = Zeta value %e A326891 ---+--------+--------------------- %e A326891 1 | 126 | -0.02762949885719994 %e A326891 2 | 134 | -0.01690039090339079 %e A326891 3 | 777 | -0.00964626429746985 %e A326891 4 | 1165 | -0.008575843736423 %e A326891 5 | 2808 | -0.005747300941326 %e A326891 6 | 3782 | -0.000760294730822 %e A326891 7 | 12174 | -0.00045763304501 %e A326891 8 | 14374 | -0.00027891005688 %e A326891 9 | 23149 | -0.00007068683846 %e A326891 10 | 60780 | -0.0000398945276 %e A326891 11 | 117807 | -0.0000229487717 %e A326891 12 | 126085 | -0.0000077126884 %t A326891 ee = 10; cc = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[ RiemannSiegelTheta][n Pi], 10]]];If[(kk < 0) && (Abs[kk] < ee), AppendTo[cc, n]; ee = Abs[kk]], {n, 1, 1000000}]; aa %Y A326891 Cf. A114856, A326890. %K A326891 nonn,more %O A326891 1,1 %A A326891 _Artur Jasinski_, Sep 13 2019