cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326891 Successive negative minima of Gram's points g(n) of the Riemann zeta function.

This page as a plain text file.
%I A326891 #24 Apr 16 2022 15:04:00
%S A326891 126,134,777,1165,2808,3782,12174,14374,23149,60780,117807,126085
%N A326891 Successive negative minima of Gram's points g(n) of the Riemann zeta function.
%C A326891 This sequence is subset of A114856.
%C A326891 Gram's points occur when the imaginary part of Riemann zeta function is zero but the real part isn't zero.
%C A326891 For very small values of Gram's points, the distance between nearest zero of Riemann zeta function is very small.
%C A326891 For successive positive minima of Gram's points g(n) of the Riemann zeta function see A326890.
%H A326891 M. A. Korolev, <a href="https://doi.org/10.4213/sm8253">On small values of the Riemann zeta-function at Gram points</a>, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian.
%e A326891    n |  a(n)  | g(a(n)) = Zeta value
%e A326891   ---+--------+---------------------
%e A326891    1 |    126 | -0.02762949885719994
%e A326891    2 |    134 | -0.01690039090339079
%e A326891    3 |    777 | -0.00964626429746985
%e A326891    4 |   1165 | -0.008575843736423
%e A326891    5 |   2808 | -0.005747300941326
%e A326891    6 |   3782 | -0.000760294730822
%e A326891    7 |  12174 | -0.00045763304501
%e A326891    8 |  14374 | -0.00027891005688
%e A326891    9 |  23149 | -0.00007068683846
%e A326891   10 |  60780 | -0.0000398945276
%e A326891   11 | 117807 | -0.0000229487717
%e A326891   12 | 126085 | -0.0000077126884
%t A326891 ee = 10; cc = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[ RiemannSiegelTheta][n Pi], 10]]];If[(kk < 0) && (Abs[kk] < ee), AppendTo[cc, n]; ee = Abs[kk]], {n, 1, 1000000}]; aa
%Y A326891 Cf. A114856, A326890.
%K A326891 nonn,more
%O A326891 1,1
%A A326891 _Artur Jasinski_, Sep 13 2019