This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326900 #11 Jan 29 2024 13:48:34 %S A326900 1,2,6,29,232,3032,62837,2009408,97034882,6952703663,728107141058, %T A326900 109978369078580,23682049666957359,7195441649260733390, %U A326900 3056891748255795885338,1801430622263459795017565,1462231768717868324127642932,1624751185398704445629757084188,2457871026957756859612862822442301 %N A326900 Number of set-systems on n vertices that are closed under union and intersection. %C A326900 A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint. %e A326900 The a(0) = 1 through a(3) = 29 set-systems: %e A326900 {} {} {} {} %e A326900 {{1}} {{1}} {{1}} %e A326900 {{2}} {{2}} %e A326900 {{1,2}} {{3}} %e A326900 {{1},{1,2}} {{1,2}} %e A326900 {{2},{1,2}} {{1,3}} %e A326900 {{2,3}} %e A326900 {{1,2,3}} %e A326900 {{1},{1,2}} %e A326900 {{1},{1,3}} %e A326900 {{2},{1,2}} %e A326900 {{2},{2,3}} %e A326900 {{3},{1,3}} %e A326900 {{3},{2,3}} %e A326900 {{1},{1,2,3}} %e A326900 {{2},{1,2,3}} %e A326900 {{3},{1,2,3}} %e A326900 {{1,2},{1,2,3}} %e A326900 {{1,3},{1,2,3}} %e A326900 {{2,3},{1,2,3}} %e A326900 {{1},{1,2},{1,2,3}} %e A326900 {{1},{1,3},{1,2,3}} %e A326900 {{2},{1,2},{1,2,3}} %e A326900 {{2},{2,3},{1,2,3}} %e A326900 {{3},{1,3},{1,2,3}} %e A326900 {{3},{2,3},{1,2,3}} %e A326900 {{1},{1,2},{1,3},{1,2,3}} %e A326900 {{2},{1,2},{2,3},{1,2,3}} %e A326900 {{3},{1,3},{2,3},{1,2,3}} %t A326900 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] %t A326900 (* Second program: *) %t A326900 A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {_, _}][[All, 2]]; %t A326900 a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}]; %t A326900 a /@ Range[0, 18] (* _Jean-François Alcover_, Jan 01 2020 *) %Y A326900 Binomial transform of A006058 (the covering case). %Y A326900 The case closed under union only is A102896. %Y A326900 The case with {} allowed is A306445. %Y A326900 The BII-numbers of these set-systems are A326876. %Y A326900 The case closed under intersection only is A326901. %Y A326900 The unlabeled version is A326908. %Y A326900 Cf. A000798, A001930, A102895, A102898, A326866, A326878, A326882. %K A326900 nonn %O A326900 0,2 %A A326900 _Gus Wiseman_, Aug 04 2019 %E A326900 a(16)-a(18) from A006058 by _Jean-François Alcover_, Jan 01 2020