cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326900 Number of set-systems on n vertices that are closed under union and intersection.

This page as a plain text file.
%I A326900 #11 Jan 29 2024 13:48:34
%S A326900 1,2,6,29,232,3032,62837,2009408,97034882,6952703663,728107141058,
%T A326900 109978369078580,23682049666957359,7195441649260733390,
%U A326900 3056891748255795885338,1801430622263459795017565,1462231768717868324127642932,1624751185398704445629757084188,2457871026957756859612862822442301
%N A326900 Number of set-systems on n vertices that are closed under union and intersection.
%C A326900 A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.
%e A326900 The a(0) = 1 through a(3) = 29 set-systems:
%e A326900   {}  {}     {}           {}
%e A326900       {{1}}  {{1}}        {{1}}
%e A326900              {{2}}        {{2}}
%e A326900              {{1,2}}      {{3}}
%e A326900              {{1},{1,2}}  {{1,2}}
%e A326900              {{2},{1,2}}  {{1,3}}
%e A326900                           {{2,3}}
%e A326900                           {{1,2,3}}
%e A326900                           {{1},{1,2}}
%e A326900                           {{1},{1,3}}
%e A326900                           {{2},{1,2}}
%e A326900                           {{2},{2,3}}
%e A326900                           {{3},{1,3}}
%e A326900                           {{3},{2,3}}
%e A326900                           {{1},{1,2,3}}
%e A326900                           {{2},{1,2,3}}
%e A326900                           {{3},{1,2,3}}
%e A326900                           {{1,2},{1,2,3}}
%e A326900                           {{1,3},{1,2,3}}
%e A326900                           {{2,3},{1,2,3}}
%e A326900                           {{1},{1,2},{1,2,3}}
%e A326900                           {{1},{1,3},{1,2,3}}
%e A326900                           {{2},{1,2},{1,2,3}}
%e A326900                           {{2},{2,3},{1,2,3}}
%e A326900                           {{3},{1,3},{1,2,3}}
%e A326900                           {{3},{2,3},{1,2,3}}
%e A326900                           {{1},{1,2},{1,3},{1,2,3}}
%e A326900                           {{2},{1,2},{2,3},{1,2,3}}
%e A326900                           {{3},{1,3},{2,3},{1,2,3}}
%t A326900 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
%t A326900 (* Second program: *)
%t A326900 A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {_, _}][[All, 2]];
%t A326900 a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}];
%t A326900 a /@ Range[0, 18] (* _Jean-François Alcover_, Jan 01 2020 *)
%Y A326900 Binomial transform of A006058 (the covering case).
%Y A326900 The case closed under union only is A102896.
%Y A326900 The case with {} allowed is A306445.
%Y A326900 The BII-numbers of these set-systems are A326876.
%Y A326900 The case closed under intersection only is A326901.
%Y A326900 The unlabeled version is A326908.
%Y A326900 Cf. A000798, A001930, A102895, A102898, A326866, A326878, A326882.
%K A326900 nonn
%O A326900 0,2
%A A326900 _Gus Wiseman_, Aug 04 2019
%E A326900 a(16)-a(18) from A006058 by _Jean-François Alcover_, Jan 01 2020