This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326901 #16 Aug 11 2019 13:50:49 %S A326901 1,2,6,32,418,23702,16554476,1063574497050,225402367516942398102 %N A326901 Number of set-systems (without {}) on n vertices that are closed under intersection. %C A326901 A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint. %H A326901 M. Habib and L. Nourine, <a href="https://doi.org/10.1016/j.disc.2004.11.010">The number of Moore families on n = 6</a>, Discrete Math., 294 (2005), 291-296. %F A326901 a(n) = 1 + Sum_{k=0, n-1} binomial(n,k)*A102895(k). - _Andrew Howroyd_, Aug 10 2019 %e A326901 The a(3) = 32 set-systems: %e A326901 {} {{1}} {{1}{12}} {{1}{12}{13}} {{1}{12}{13}{123}} %e A326901 {{2}} {{1}{13}} {{2}{12}{23}} {{2}{12}{23}{123}} %e A326901 {{3}} {{2}{12}} {{3}{13}{23}} {{3}{13}{23}{123}} %e A326901 {{12}} {{2}{23}} {{1}{12}{123}} %e A326901 {{13}} {{3}{13}} {{1}{13}{123}} %e A326901 {{23}} {{3}{23}} {{2}{12}{123}} %e A326901 {{123}} {{1}{123}} {{2}{23}{123}} %e A326901 {{2}{123}} {{3}{13}{123}} %e A326901 {{3}{123}} {{3}{23}{123}} %e A326901 {{12}{123}} %e A326901 {{13}{123}} %e A326901 {{23}{123}} %t A326901 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] %Y A326901 The case with union instead of intersection is A102896. %Y A326901 The case closed under union and intersection is A326900. %Y A326901 The covering case is A326902. %Y A326901 The connected case is A326903. %Y A326901 The unlabeled version is A326904. %Y A326901 The BII-numbers of these set-systems are A326905. %Y A326901 Cf. A000798, A001930, A006058, A102895, A102898, A182507, A326866, A326876, A326878, A326882. %K A326901 nonn,more %O A326901 0,2 %A A326901 _Gus Wiseman_, Aug 04 2019 %E A326901 a(5)-a(8) from _Andrew Howroyd_, Aug 10 2019