This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326904 #10 Aug 09 2019 11:23:57 %S A326904 1,2,4,10,38,368,29328,216591692,5592326399531792 %N A326904 Number of unlabeled set-systems (without {}) on n vertices that are closed under intersection. %C A326904 A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint. %C A326904 Apart from the offset the same as A193675. - _R. J. Mathar_, Aug 09 2019 %F A326904 a(n > 0) = 2 * A193674(n - 1). %e A326904 Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems: %e A326904 {} {} {} {} %e A326904 {{1}} {{1}} {{1}} %e A326904 {{1,2}} {{1,2}} %e A326904 {{2},{1,2}} {{1,2,3}} %e A326904 {{2},{1,2}} %e A326904 {{3},{1,2,3}} %e A326904 {{2,3},{1,2,3}} %e A326904 {{3},{1,3},{2,3}} %e A326904 {{3},{2,3},{1,2,3}} %e A326904 {{3},{1,3},{2,3},{1,2,3}} %Y A326904 The covering case is A108800(n - 1). %Y A326904 The case with an edge containing all of the vertices is A193674(n - 1). %Y A326904 The case with union instead of intersection is A193674. %Y A326904 The labeled version is A326901. %Y A326904 Cf. A000798, A001930, A006058, A102895, A102898, A326876, A326866, A326878, A326882, A326903, A326906. %K A326904 nonn,more %O A326904 0,2 %A A326904 _Gus Wiseman_, Aug 04 2019