This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326907 #8 Aug 11 2019 12:24:35 %S A326907 2,2,6,28,330,28960,216562364,5592326182940100 %N A326907 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and cover all n vertices. First differences of A193675. %C A326907 Differs from A108800 in having a(0) = 2 instead of 1. %e A326907 Non-isomorphic representatives of the a(0) = 2 through a(3) = 28 sets of sets: %e A326907 {} {{1}} {{12}} {{123}} %e A326907 {{}} {{}{1}} {{}{12}} {{}{123}} %e A326907 {{2}{12}} {{3}{123}} %e A326907 {{}{2}{12}} {{23}{123}} %e A326907 {{1}{2}{12}} {{}{3}{123}} %e A326907 {{}{1}{2}{12}} {{}{23}{123}} %e A326907 {{1}{23}{123}} %e A326907 {{3}{23}{123}} %e A326907 {{13}{23}{123}} %e A326907 {{}{1}{23}{123}} %e A326907 {{}{3}{23}{123}} %e A326907 {{}{13}{23}{123}} %e A326907 {{2}{3}{23}{123}} %e A326907 {{2}{13}{23}{123}} %e A326907 {{3}{13}{23}{123}} %e A326907 {{12}{13}{23}{123}} %e A326907 {{}{2}{3}{23}{123}} %e A326907 {{}{2}{13}{23}{123}} %e A326907 {{}{3}{13}{23}{123}} %e A326907 {{}{12}{13}{23}{123}} %e A326907 {{2}{3}{13}{23}{123}} %e A326907 {{3}{12}{13}{23}{123}} %e A326907 {{}{2}{3}{13}{23}{123}} %e A326907 {{}{3}{12}{13}{23}{123}} %e A326907 {{2}{3}{12}{13}{23}{123}} %e A326907 {{}{2}{3}{12}{13}{23}{123}} %e A326907 {{1}{2}{3}{12}{13}{23}{123}} %e A326907 {{}{1}{2}{3}{12}{13}{23}{123}} %Y A326907 The case without empty sets is A108798. %Y A326907 The case with a single covering edge is A108800. %Y A326907 First differences of A193675. %Y A326907 The case also closed under intersection is A326898 for n > 0. %Y A326907 The labeled version is A326906. %Y A326907 The same for union instead of intersection is (also) A326907. %Y A326907 Cf. A001930, A102895, A108798, A193674, A193675, A326880, A326881, A326883, A326898, A326908. %K A326907 nonn,more %O A326907 0,1 %A A326907 _Gus Wiseman_, Aug 03 2019 %E A326907 a(7) added from A108800 by _Andrew Howroyd_, Aug 10 2019