A326908 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.
2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0
Examples
Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets: {} {} {} {} {{}} {{}} {{}} {{}} {{1}} {{1}} {{1}} {{}{1}} {{12}} {{12}} {{}{1}} {{}{1}} {{}{12}} {{123}} {{2}{12}} {{}{12}} {{}{2}{12}} {{}{123}} {{}{1}{2}{12}} {{2}{12}} {{3}{123}} {{}{2}{12}} {{23}{123}} {{}{3}{123}} {{}{23}{123}} {{}{1}{2}{12}} {{3}{23}{123}} {{}{1}{23}{123}} {{}{3}{23}{123}} {{3}{13}{23}{123}} {{}{2}{3}{23}{123}} {{}{3}{13}{23}{123}} {{}{2}{3}{13}{23}{123}} {{}{1}{2}{3}{12}{13}{23}{123}}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]