This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326909 #10 Dec 30 2019 10:06:45 %S A326909 2,2,7,45,500,9053,257151,11161244,725343385,69407094565, %T A326909 9639771895398,1919182252611715,541764452276876719, %U A326909 214777343584048313318,118575323291814379721651,90492591258634595795504697,94844885130660856889237907260,135738086271526574073701454370969,263921383510041055422284977248713291 %N A326909 Number of sets of subsets of {1..n} closed under union and intersection and covering all of the vertices. %C A326909 Differs from A326878 in having a(0) = 2 instead of 1. %F A326909 a(n) = A000798(n) + A006058(n). - _Jean-François Alcover_, Dec 30 2019, after _Gus Wiseman_'s comment in A006058. %e A326909 The a(0) = 2 through a(2) = 7 sets of subsets: %e A326909 {} {{1}} {{1,2}} %e A326909 {{}} {{},{1}} {{},{1,2}} %e A326909 {{1},{1,2}} %e A326909 {{2},{1,2}} %e A326909 {{},{1},{1,2}} %e A326909 {{},{2},{1,2}} %e A326909 {{},{1},{2},{1,2}} %t A326909 Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] %t A326909 (* Second program: *) %t A326909 A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {_, _}][[All, 2]]; %t A326909 A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {_, _}][[All, 2]]; %t A326909 a[n_] := A006058[[n + 1]] + A000798[[n + 1]]; %t A326909 a /@ Range[0, 18] (* _Jean-François Alcover_, Dec 30 2019 *) %Y A326909 Covering sets of subsets are A000371. %Y A326909 The case without empty sets is A108798. %Y A326909 The case with a single covering edge is A326878. %Y A326909 The unlabeled version is A326898 for n > 0. %Y A326909 The case closed only under union is A326906. %Y A326909 The case closed only under intersection is (also) A326906. %Y A326909 Cf. A000798, A001930, A003465, A006058, A306445, A326876, A326882, A326907, A326908. %K A326909 nonn %O A326909 0,1 %A A326909 _Gus Wiseman_, Aug 04 2019 %E A326909 a(18) from A000798+A006058 by _Jean-François Alcover_, Dec 30 2019