This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326910 #6 Aug 05 2019 07:36:49 %S A326910 0,1,2,4,5,6,8,16,17,20,21,24,32,34,36,38,40,48,52,56,64,65,66,68,69, %T A326910 70,72,80,81,84,85,88,96,98,100,102,104,112,116,120,128,256,257,260, %U A326910 261,272,273,276,277,320,321,324,325,336,337,340,341,384,512,514 %N A326910 BII-numbers of pairwise intersecting set-systems. %C A326910 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %e A326910 The sequence of all pairwise intersecting set-systems together with their BII-numbers begins: %e A326910 0: {} %e A326910 1: {{1}} %e A326910 2: {{2}} %e A326910 4: {{1,2}} %e A326910 5: {{1},{1,2}} %e A326910 6: {{2},{1,2}} %e A326910 8: {{3}} %e A326910 16: {{1,3}} %e A326910 17: {{1},{1,3}} %e A326910 20: {{1,2},{1,3}} %e A326910 21: {{1},{1,2},{1,3}} %e A326910 24: {{3},{1,3}} %e A326910 32: {{2,3}} %e A326910 34: {{2},{2,3}} %e A326910 36: {{1,2},{2,3}} %e A326910 38: {{2},{1,2},{2,3}} %e A326910 40: {{3},{2,3}} %e A326910 48: {{1,3},{2,3}} %e A326910 52: {{1,2},{1,3},{2,3}} %e A326910 56: {{3},{1,3},{2,3}} %t A326910 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326910 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326910 Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&] %Y A326910 Intersecting set systems are A051185 (not-covering) or A305843 (covering). %Y A326910 BII-numbers of set-systems with empty intersection are A326911. %Y A326910 Cf. A006058, A048793, A326031, A326875, A326912, A326913. %K A326910 nonn %O A326910 1,3 %A A326910 _Gus Wiseman_, Aug 04 2019