This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326914 #50 Dec 17 2020 07:54:56 %S A326914 1,1,2,2,5,1,12,15,18,64,52,20,166,340,203,18,332,1315,1866,877,15, %T A326914 566,3895,9930,10710,4140,11,864,9770,39960,74438,64520,21147,6,1214, %U A326914 21848,134871,386589,564508,408096,115975,3,1596,44880,402756,1668338,3652712 %N A326914 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, min(j:A001787(j)>=n)<=k<=n, read by rows. %C A326914 T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero. %H A326914 Alois P. Heinz, <a href="/A326914/b326914.txt">Rows n = 0..200, flattened</a> %H A326914 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A326914 Sum_{k=1..n} k * T(n,k) = A327115(n). %F A326914 T(n*2^(n-1),n) = T(A001787(n),n) = 1. %F A326914 T(n*2^(n-1)-1,n) = n for n >= 2. %e A326914 T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c. %e A326914 Triangle T(n,k) begins: %e A326914 1; %e A326914 1; %e A326914 2; %e A326914 2, 5; %e A326914 1, 12, 15; %e A326914 18, 64, 52; %e A326914 20, 166, 340, 203; %e A326914 18, 332, 1315, 1866, 877; %e A326914 15, 566, 3895, 9930, 10710, 4140; %e A326914 11, 864, 9770, 39960, 74438, 64520, 21147; %e A326914 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975; %e A326914 ... %p A326914 C:= binomial: %p A326914 g:= proc(n) option remember; n*2^(n-1) end: %p A326914 h:= proc(n) option remember; local k; for k from %p A326914 `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od %p A326914 end: %p A326914 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A326914 b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i))) %p A326914 end: %p A326914 T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): %p A326914 seq(seq(T(n, k), k=h(n)..n), n=0..12); %t A326914 c = Binomial; %t A326914 g[n_] := g[n] = n*2^(n - 1); %t A326914 h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]]; %t A326914 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]]; %t A326914 T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]; %t A326914 Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 17 2020, after _Alois P. Heinz_ *) %Y A326914 Main diagonal gives A000110. %Y A326914 Row sums give A116539. %Y A326914 Column sums give A003465. %Y A326914 Cf. A001787, A255903, A326962 (this triangle read by columns), A327115, A327116, A327117. %K A326914 nonn,tabf %O A326914 0,3 %A A326914 _Alois P. Heinz_, Sep 13 2019