This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326926 #12 Oct 31 2019 21:42:05 %S A326926 1,1,-2,0,-3,3,-1,0,6,-4,-1,5,0,-10,5,0,6,-15,0,15,-6,1,0,-21,35,0, %T A326926 -21,7,1,-8,0,56,-70,0,28,-8,0,-9,36,0,-126,126,0,-36,9,-1,0,45,-120, %U A326926 0,252,-210,0,45,-10,-1,11,0,-165,330,0,-462,330,0,-55,11,0 %N A326926 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1/(1-x+x^2)). %C A326926 It appears that each nonconstant polynomial is irreducible if and only if its degree is p-1 for some prime p other than 3. %e A326926 First eight rows: %e A326926 1; %e A326926 1, -2; %e A326926 0, -3, 3; %e A326926 -1, 0, 6, -4; %e A326926 -1, 5, 0, -10, 5; %e A326926 0, 6, -15, 0, 15, -6; %e A326926 1, 0, -21, 35, 0, -21, 7; %e A326926 1, -8, 0, 56, -70, 0, 28, -8; %e A326926 First eight polynomials: %e A326926 1 %e A326926 1 - 2*x %e A326926 -3*x + 3*x^2 = 3 (-1 + x)*x %e A326926 -1 + 6*x^2 - 4*x^3 = (-1 + 2*x) (1 + 2*x - 2*x^2) %e A326926 -1 + 5*x - 10*x^3 + 5*x^4 %e A326926 6*x - 15*x^2 + 15*x^4 - 6*x^5 = -3*x*(-2 + x)*(-1 + x)*(1 + x)*(-1 + 2*x) %e A326926 1 - 21*x^2 + 35*x^3 - 21*x^5 + 7*x^6 %e A326926 1 - 8*x + 56*x^3 - 70*x^4 + 28*x^6 - 8*x^7 = -(-1 + 2*x)*(-1 - 2*x + 2*x^2)*(-1 + 8*x - 6*x^2 - 4*x^3 + 2*x^4) %t A326926 g[x_, n_] := Numerator[ Factor[D[1/(x^2 - x + 1), {x, n}]]]; %t A326926 Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *) %t A326926 h[n_] := CoefficientList[g[x, n]/n!, x] %t A326926 Table[h[n], {n, 0, 10}] (* A326926 *) %t A326926 Column[%] %t A326926 Table[-1 + Length[FactorList[g[x, n]/n!]], {n, 0, 100}] (* A326933 *) %Y A326926 Cf. A326933. %K A326926 tabl,sign %O A326926 0,3 %A A326926 _Clark Kimberling_, Oct 24 2019