This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326940 #5 Aug 09 2019 07:16:44 %S A326940 1,2,7,112,32105,2147161102,9223372004645756887, %T A326940 170141183460469231537996491362807709908, %U A326940 57896044618658097711785492504343953921871039195927143534469727707459805807105 %N A326940 Number of T_0 set-systems on n vertices. %C A326940 The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). %F A326940 Binomial transform of A059201. %e A326940 The a(0) = 1 through a(2) = 7 set-systems: %e A326940 {} {} {} %e A326940 {{1}} {{1}} %e A326940 {{2}} %e A326940 {{1},{2}} %e A326940 {{1},{1,2}} %e A326940 {{2},{1,2}} %e A326940 {{1},{2},{1,2}} %t A326940 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326940 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]],{n,0,3}] %Y A326940 The non-T_0 version is A058891 shifted to the left. %Y A326940 The covering case is A059201. %Y A326940 The version with empty edges is A326941. %Y A326940 The unlabeled version is A326946. %Y A326940 Cf. A003180, A316978, A319559, A319564, A319637, A326939, A326947, A326949. %K A326940 nonn %O A326940 0,2 %A A326940 _Gus Wiseman_, Aug 07 2019