cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326942 Number of unlabeled T_0 sets of subsets of {1..n} that cover all n vertices.

Original entry on oeis.org

2, 2, 6, 58, 3770
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(2) = 6 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A003181.
The case without empty edges is A319637.
The labeled version is A326939.
The non-covering version is A326949 (partial sums).

Formula

a(n) = 2 * A319637(n).