This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326946 #10 Oct 11 2023 22:22:32 %S A326946 1,2,5,34,1919,18660178 %N A326946 Number of unlabeled T_0 set-systems on n vertices. %C A326946 The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). %F A326946 Partial sums of A319637. %F A326946 a(n) = A326949(n)/2. %e A326946 Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems: %e A326946 {} {} {} %e A326946 {{1}} {{1}} %e A326946 {{1},{2}} %e A326946 {{2},{1,2}} %e A326946 {{1},{2},{1,2}} %t A326946 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326946 Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}] %Y A326946 The non-T_0 version is A000612. %Y A326946 The antichain case is A245567. %Y A326946 The covering case is A319637. %Y A326946 The labeled version is A326940. %Y A326946 The version with empty edges allowed is A326949. %Y A326946 Cf. A003180, A055621, A059052, A059201, A316978, A319559, A319564, A326942. %K A326946 nonn,more %O A326946 0,2 %A A326946 _Gus Wiseman_, Aug 08 2019 %E A326946 a(5) from _Max Alekseyev_, Oct 11 2023