cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326946 Number of unlabeled T_0 set-systems on n vertices.

This page as a plain text file.
%I A326946 #10 Oct 11 2023 22:22:32
%S A326946 1,2,5,34,1919,18660178
%N A326946 Number of unlabeled T_0 set-systems on n vertices.
%C A326946 The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
%F A326946 Partial sums of A319637.
%F A326946 a(n) = A326949(n)/2.
%e A326946 Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
%e A326946   {}  {}     {}
%e A326946       {{1}}  {{1}}
%e A326946              {{1},{2}}
%e A326946              {{2},{1,2}}
%e A326946              {{1},{2},{1,2}}
%t A326946 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
%t A326946 Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]
%Y A326946 The non-T_0 version is A000612.
%Y A326946 The antichain case is A245567.
%Y A326946 The covering case is A319637.
%Y A326946 The labeled version is A326940.
%Y A326946 The version with empty edges allowed is A326949.
%Y A326946 Cf. A003180, A055621, A059052, A059201, A316978, A319559, A319564, A326942.
%K A326946 nonn,more
%O A326946 0,2
%A A326946 _Gus Wiseman_, Aug 08 2019
%E A326946 a(5) from _Max Alekseyev_, Oct 11 2023