This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326947 #9 Jul 26 2024 05:28:26 %S A326947 0,1,2,3,5,6,7,8,9,10,11,13,14,15,17,19,20,21,22,23,24,25,26,27,28,29, %T A326947 30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, %U A326947 55,56,57,58,59,60,61,62,63,67,69,70,71,73,74,75,77,78 %N A326947 BII-numbers of T_0 set-systems. %C A326947 The dual of a set-system has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). %C A326947 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %H A326947 John Tyler Rascoe, <a href="/A326947/b326947.txt">Table of n, a(n) for n = 1..10000</a> %e A326947 The sequence of all T_0 set-systems together with their BII numbers begins: %e A326947 0: {} %e A326947 1: {{1}} %e A326947 2: {{2}} %e A326947 3: {{1},{2}} %e A326947 5: {{1},{1,2}} %e A326947 6: {{2},{1,2}} %e A326947 7: {{1},{2},{1,2}} %e A326947 8: {{3}} %e A326947 9: {{1},{3}} %e A326947 10: {{2},{3}} %e A326947 11: {{1},{2},{3}} %e A326947 13: {{1},{1,2},{3}} %e A326947 14: {{2},{1,2},{3}} %e A326947 15: {{1},{2},{1,2},{3}} %e A326947 17: {{1},{1,3}} %e A326947 19: {{1},{2},{1,3}} %e A326947 20: {{1,2},{1,3}} %e A326947 21: {{1},{1,2},{1,3}} %e A326947 22: {{2},{1,2},{1,3}} %e A326947 23: {{1},{2},{1,2},{1,3}} %t A326947 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326947 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326947 TZQ[sys_]:=UnsameQ@@dual[sys]; %t A326947 Select[Range[0,100],TZQ[bpe/@bpe[#]]&] %o A326947 (Python) %o A326947 from itertools import count, chain, islice %o A326947 def bin_i(n): #binary indices %o A326947 return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) %o A326947 def a_gen(): %o A326947 for n in count(0): %o A326947 a,b,s = [bin_i(k) for k in bin_i(n)],[],set() %o A326947 for i in {i for i in chain.from_iterable(a)}: %o A326947 b.append([]) %o A326947 for j in range(len(a)): %o A326947 if i in a[j]: %o A326947 b[-1].append(j) %o A326947 s.add(tuple(b[-1])) %o A326947 if len(s) == len(b): %o A326947 yield n %o A326947 A326947_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, Jul 25 2024 %Y A326947 T_0 set-systems are counted by A326940, with unlabeled version A326946. %Y A326947 Cf. A059201, A316978, A319559, A319564, A326939, A326941, A326949. %K A326947 nonn,base %O A326947 1,3 %A A326947 _Gus Wiseman_, Aug 08 2019