This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326952 #31 Aug 24 2019 20:31:58 %S A326952 1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,2,1,4,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1, %T A326952 1,2,1,4,1,1,1,2,2,1,1,1,5,1,1,1,1,1,3,3,1,3,1,1,1,7,3,1,1,1,2,1,2,1, %U A326952 1,1,2,1,1,1,1,3,1,1,2,2,1,3,2,2,1,4,1,1,2,2,1,1,2,1,1,2,1,3,2,2 %N A326952 a(n) = A001222(A028905(n)). %C A326952 Multiplicity of prime divisors of n, where n is a number composed of the sorted digits of a prime number. %C A326952 Conjecture: the sum of the first n terms of A326952 (smallest to largest sorting) is <= the sum of the first n terms of A326953 (largest to smallest sorting). This is true for the first 9592 terms. %H A326952 Joshua Michael McAteer, <a href="/A326952/b326952.txt">Table of n, a(n) for n = 1..9592</a> %e A326952 The 13th prime number is 41. Sorting the digits gives 14. 14 has 2 factors, 2 and 7. The 13th term of this sequence is 2. %o A326952 (MATLAB) %o A326952 nmax= 100; %o A326952 p = primes(nmax); %o A326952 lp = length(p); %o A326952 sfac = zeros(1,lp); %o A326952 for i = 1:lp %o A326952 digp=str2double(regexp(num2str(p(i)),'\d','match')); %o A326952 sdigp = sort(digp); %o A326952 l=length(digp); %o A326952 conv = 10.^flip(0:(l-1)); %o A326952 snum = sum(conv.*sdigp); %o A326952 sfac(i) = numel(factor(snum)); %o A326952 end %Y A326952 Cf. A001222 (bigomega), A028905, A326953 (for reverse sorting). %K A326952 nonn,base %O A326952 1,13 %A A326952 _Joshua Michael McAteer_, Aug 06 2019