cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326952 a(n) = A001222(A028905(n)).

This page as a plain text file.
%I A326952 #31 Aug 24 2019 20:31:58
%S A326952 1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,2,1,4,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,
%T A326952 1,2,1,4,1,1,1,2,2,1,1,1,5,1,1,1,1,1,3,3,1,3,1,1,1,7,3,1,1,1,2,1,2,1,
%U A326952 1,1,2,1,1,1,1,3,1,1,2,2,1,3,2,2,1,4,1,1,2,2,1,1,2,1,1,2,1,3,2,2
%N A326952 a(n) = A001222(A028905(n)).
%C A326952 Multiplicity of prime divisors of n, where n is a number composed of the sorted digits of a prime number.
%C A326952 Conjecture: the sum of the first n terms of A326952 (smallest to largest sorting) is <= the sum of the first n terms of A326953 (largest to smallest sorting). This is true for the first 9592 terms.
%H A326952 Joshua Michael McAteer, <a href="/A326952/b326952.txt">Table of n, a(n) for n = 1..9592</a>
%e A326952 The 13th prime number is 41. Sorting the digits gives 14. 14 has 2 factors, 2 and 7. The 13th term of this sequence is 2.
%o A326952 (MATLAB)
%o A326952 nmax= 100;
%o A326952 p = primes(nmax);
%o A326952 lp = length(p);
%o A326952 sfac = zeros(1,lp);
%o A326952 for i = 1:lp
%o A326952 digp=str2double(regexp(num2str(p(i)),'\d','match'));
%o A326952 sdigp = sort(digp);
%o A326952 l=length(digp);
%o A326952 conv = 10.^flip(0:(l-1));
%o A326952 snum = sum(conv.*sdigp);
%o A326952 sfac(i) = numel(factor(snum));
%o A326952 end
%Y A326952 Cf. A001222 (bigomega), A028905, A326953 (for reverse sorting).
%K A326952 nonn,base
%O A326952 1,13
%A A326952 _Joshua Michael McAteer_, Aug 06 2019