This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326953 #36 Aug 24 2019 20:35:29 %S A326953 1,1,1,1,1,1,1,2,5,3,1,1,1,1,2,1,2,1,3,1,1,1,1,3,1,3,3,3,4,1,2,1,2,3, %T A326953 1,2,1,1,1,2,1,1,1,3,1,1,1,3,3,2,3,3,1,1,5,4,3,2,3,1,7,3,3,1,1,2,1,1, %U A326953 1,2,2,1,2,1,2,3,1,2,3,4,1,1,1,1,2,1,5,3,1,1,3,2,3,1,3,3,4,1,4,1 %N A326953 a(n) = A001222(A028906(n)). %C A326953 Multiplicity of prime divisors of n, where n is a number composed of the reverse sorted digits of a prime number. %C A326953 Conjecture: the sum of the first n terms of A326953 (largest to smallest sorting) is >= the sum of the first n terms of A326952 (smallest to largest sorting). This is true for the first 9592 terms. %H A326953 Joshua Michael McAteer, <a href="/A326953/b326953.txt">Table of n, a(n) for n = 1..9592</a> %e A326953 The 28th prime number is 107. The reverse sorted digits are 710. The factorization of 710 is 2, 5, 71, therefore the 28th term in this sequence is 3. %o A326953 (MATLAB) %o A326953 nmax= 100; %o A326953 p = primes(nmax); %o A326953 lp = length(p); %o A326953 lfac = zeros(1, lp); %o A326953 for i = 1:lp %o A326953 digp=str2double(regexp(num2str(p(i)), '\d', 'match')); %o A326953 ldigp = flip(sort(digp)); %o A326953 l=length(digp); %o A326953 conv = 10.^flip(0:(l-1)); %o A326953 lnum = sum(conv.*ldigp); %o A326953 lfac(i) = numel(factor(lnum)); %o A326953 end %Y A326953 Cf. A001222 (bigomega), A028906, A326952 (for ascending sorted version). %K A326953 nonn,base %O A326953 1,8 %A A326953 _Joshua Michael McAteer_, Aug 06 2019