cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326957 Total number of noncomposite parts in all partitions of n.

This page as a plain text file.
%I A326957 #22 Nov 15 2020 08:58:32
%S A326957 0,1,3,6,11,19,32,50,77,115,170,244,348,486,675,923,1253,1682,2246,
%T A326957 2968,3904,5094,6616,8533,10962,13997,17808,22538,28426,35689,44670,
%U A326957 55678,69199,85692,105826,130261,159935,195778,239092,291191,353854,428925,518848
%N A326957 Total number of noncomposite parts in all partitions of n.
%F A326957 a(n) = A037032(n) + A000070(n-1), n >= 1.
%F A326957 a(n) = A006128(n) - A326981(n).
%e A326957 For n = 6 we have:
%e A326957 --------------------------------------
%e A326957 .                        Number of
%e A326957 Partitions             noncomposite
%e A326957 of 6                       parts
%e A326957 --------------------------------------
%e A326957 6 .......................... 0
%e A326957 3 + 3 ...................... 2
%e A326957 4 + 2 ...................... 1
%e A326957 2 + 2 + 2 .................. 3
%e A326957 5 + 1 ...................... 2
%e A326957 3 + 2 + 1 .................. 3
%e A326957 4 + 1 + 1 .................. 2
%e A326957 2 + 2 + 1 + 1 .............. 4
%e A326957 3 + 1 + 1 + 1 .............. 4
%e A326957 2 + 1 + 1 + 1 + 1 .......... 5
%e A326957 1 + 1 + 1 + 1 + 1 + 1 ...... 6
%e A326957 ------------------------------------
%e A326957 Total ..................... 32
%e A326957 So a(6) = 32.
%p A326957 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+
%p A326957       (p-> p+[0, `if`(isprime(i), p[1], 0)])(b(n-i, min(n-i, i))))
%p A326957     end:
%p A326957 a:= n-> b(n$2)[2]:
%p A326957 seq(a(n), n=0..50);  # _Alois P. Heinz_, Aug 13 2019
%t A326957 b[n_] := Sum[PrimeNu[k] PartitionsP[n-k], {k, 1, n}];
%t A326957 c[n_] := SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}]/(1-x), {x, 0, n}];
%t A326957 a[n_] := b[n] + c[n-1];
%t A326957 a /@ Range[0, 50] (* _Jean-François Alcover_, Nov 15 2020 *)
%Y A326957 First differs from A183088 at a(13).
%Y A326957 Cf. A000041, A000070, A006128, A008578 (noncomposites), A037032, A144115, A144116, A144119, A326958, A326981.
%K A326957 nonn
%O A326957 0,3
%A A326957 _Omar E. Pol_, Aug 08 2019