This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326957 #22 Nov 15 2020 08:58:32 %S A326957 0,1,3,6,11,19,32,50,77,115,170,244,348,486,675,923,1253,1682,2246, %T A326957 2968,3904,5094,6616,8533,10962,13997,17808,22538,28426,35689,44670, %U A326957 55678,69199,85692,105826,130261,159935,195778,239092,291191,353854,428925,518848 %N A326957 Total number of noncomposite parts in all partitions of n. %F A326957 a(n) = A037032(n) + A000070(n-1), n >= 1. %F A326957 a(n) = A006128(n) - A326981(n). %e A326957 For n = 6 we have: %e A326957 -------------------------------------- %e A326957 . Number of %e A326957 Partitions noncomposite %e A326957 of 6 parts %e A326957 -------------------------------------- %e A326957 6 .......................... 0 %e A326957 3 + 3 ...................... 2 %e A326957 4 + 2 ...................... 1 %e A326957 2 + 2 + 2 .................. 3 %e A326957 5 + 1 ...................... 2 %e A326957 3 + 2 + 1 .................. 3 %e A326957 4 + 1 + 1 .................. 2 %e A326957 2 + 2 + 1 + 1 .............. 4 %e A326957 3 + 1 + 1 + 1 .............. 4 %e A326957 2 + 1 + 1 + 1 + 1 .......... 5 %e A326957 1 + 1 + 1 + 1 + 1 + 1 ...... 6 %e A326957 ------------------------------------ %e A326957 Total ..................... 32 %e A326957 So a(6) = 32. %p A326957 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+ %p A326957 (p-> p+[0, `if`(isprime(i), p[1], 0)])(b(n-i, min(n-i, i)))) %p A326957 end: %p A326957 a:= n-> b(n$2)[2]: %p A326957 seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 13 2019 %t A326957 b[n_] := Sum[PrimeNu[k] PartitionsP[n-k], {k, 1, n}]; %t A326957 c[n_] := SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}]/(1-x), {x, 0, n}]; %t A326957 a[n_] := b[n] + c[n-1]; %t A326957 a /@ Range[0, 50] (* _Jean-François Alcover_, Nov 15 2020 *) %Y A326957 First differs from A183088 at a(13). %Y A326957 Cf. A000041, A000070, A006128, A008578 (noncomposites), A037032, A144115, A144116, A144119, A326958, A326981. %K A326957 nonn %O A326957 0,3 %A A326957 _Omar E. Pol_, Aug 08 2019