This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326958 #22 Nov 17 2020 04:43:44 %S A326958 0,1,4,9,16,31,52,87,132,203,303,450,641,922,1287,1792,2446,3347,4488, %T A326958 6030,7975,10538,13778,17987,23234,29980,38383,49015,62195,78766, %U A326958 99137,124560,155672,194158,241104,298780,368747,454276,557619,683132,834252,1016955 %N A326958 Total sum of noncomposite parts in all partitions of n. %F A326958 a(n) = A073118(n) + A000070(n-1), n >= 1. %F A326958 a(n) = A066186(n) - A326982(n). %e A326958 For n = 6 we have: %e A326958 -------------------------------------- %e A326958 . Sum of %e A326958 Partitions noncomposite %e A326958 of 6 parts %e A326958 -------------------------------------- %e A326958 6 .......................... 0 %e A326958 3 + 3 ...................... 6 %e A326958 4 + 2 ...................... 2 %e A326958 2 + 2 + 2 .................. 6 %e A326958 5 + 1 ...................... 6 %e A326958 3 + 2 + 1 .................. 6 %e A326958 4 + 1 + 1 .................. 2 %e A326958 2 + 2 + 1 + 1 .............. 6 %e A326958 3 + 1 + 1 + 1 .............. 6 %e A326958 2 + 1 + 1 + 1 + 1 .......... 6 %e A326958 1 + 1 + 1 + 1 + 1 + 1 ...... 6 %e A326958 ------------------------------------ %e A326958 Total ..................... 52 %e A326958 So a(6) = 52. %p A326958 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+ %p A326958 (p-> p+[0, `if`(isprime(i), p[1]*i, 0)])(b(n-i, min(n-i, i)))) %p A326958 end: %p A326958 a:= n-> b(n$2)[2]: %p A326958 seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 13 2019 %t A326958 b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, n}, b[n, i-1] + # + {0, If[PrimeQ[i], #[[1]] i, 0]}&[b[n-i, Min[n-i, i]]]]; %t A326958 a[n_] := b[n, n][[2]]; %t A326958 a /@ Range[0, 50] (* _Jean-François Alcover_, Nov 17 2020, after _Alois P. Heinz_ *) %Y A326958 Cf. A000041, A000070, A008578 (noncomposites), A066186, A073118, A194545, A199936, A326957, A326982. %K A326958 nonn %O A326958 0,3 %A A326958 _Omar E. Pol_, Aug 08 2019