This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326959 #12 Aug 15 2019 15:39:38 %S A326959 1,2,5,22,297,20536,16232437,1063231148918,225402337742595309857 %N A326959 Number of T_0 set-systems covering a subset of {1..n} that are closed under intersection. %C A326959 A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). %F A326959 Binomial transform of A309615. %e A326959 The a(0) = 1 through a(3) = 22 set-systems: %e A326959 {} {} {} {} %e A326959 {{1}} {{1}} {{1}} %e A326959 {{2}} {{2}} %e A326959 {{1},{1,2}} {{3}} %e A326959 {{2},{1,2}} {{1},{1,2}} %e A326959 {{1},{1,3}} %e A326959 {{2},{1,2}} %e A326959 {{2},{2,3}} %e A326959 {{3},{1,3}} %e A326959 {{3},{2,3}} %e A326959 {{1},{1,2},{1,3}} %e A326959 {{2},{1,2},{2,3}} %e A326959 {{3},{1,3},{2,3}} %e A326959 {{1},{1,2},{1,2,3}} %e A326959 {{1},{1,3},{1,2,3}} %e A326959 {{2},{1,2},{1,2,3}} %e A326959 {{2},{2,3},{1,2,3}} %e A326959 {{3},{1,3},{1,2,3}} %e A326959 {{3},{2,3},{1,2,3}} %e A326959 {{1},{1,2},{1,3},{1,2,3}} %e A326959 {{2},{1,2},{2,3},{1,2,3}} %e A326959 {{3},{1,3},{2,3},{1,2,3}} %t A326959 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326959 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] %Y A326959 The covering case is A309615. %Y A326959 T_0 set-systems are A326940. %Y A326959 The version with empty edges allowed is A326945. %Y A326959 Cf. A051185, A058891, A059201, A316978, A319559, A309615, A319637, A326943, A326944, A326946, A326947, A326959. %K A326959 nonn,more %O A326959 0,2 %A A326959 _Gus Wiseman_, Aug 13 2019 %E A326959 a(5)-a(8) from _Andrew Howroyd_, Aug 14 2019