cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.

This page as a plain text file.
%I A326961 #10 Aug 12 2019 22:31:35
%S A326961 1,1,2,36,19020,2010231696,9219217412568364176,
%T A326961 170141181796805105960861096082778425120,
%U A326961 57896044618658097536026644159052312977171804852352892309392604715987334365792
%N A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.
%C A326961 Same as A059523 except with a(1) = 1 instead of 2.
%C A326961 Alternatively, these are set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of sets, none of which is a subset of any other.
%F A326961 Inverse binomial transform of A326965.
%e A326961 The a(3) = 36 set-systems:
%e A326961   {{1}{2}{3}}        {{12}{13}{23}{123}}     {{2}{3}{12}{13}{23}}
%e A326961   {{12}{13}{23}}     {{1}{2}{3}{12}{13}}     {{2}{3}{12}{13}{123}}
%e A326961   {{1}{2}{3}{12}}    {{1}{2}{3}{12}{23}}     {{2}{12}{13}{23}{123}}
%e A326961   {{1}{2}{3}{13}}    {{1}{2}{3}{13}{23}}     {{3}{12}{13}{23}{123}}
%e A326961   {{1}{2}{3}{23}}    {{1}{2}{12}{13}{23}}    {{1}{2}{3}{12}{13}{23}}
%e A326961   {{1}{2}{13}{23}}   {{1}{2}{3}{12}{123}}    {{1}{2}{3}{12}{13}{123}}
%e A326961   {{1}{2}{3}{123}}   {{1}{2}{3}{13}{123}}    {{1}{2}{3}{12}{23}{123}}
%e A326961   {{1}{3}{12}{23}}   {{1}{2}{3}{23}{123}}    {{1}{2}{3}{13}{23}{123}}
%e A326961   {{2}{3}{12}{13}}   {{1}{3}{12}{13}{23}}    {{1}{2}{12}{13}{23}{123}}
%e A326961   {{1}{12}{13}{23}}  {{1}{2}{13}{23}{123}}   {{1}{3}{12}{13}{23}{123}}
%e A326961   {{2}{12}{13}{23}}  {{1}{3}{12}{23}{123}}   {{2}{3}{12}{13}{23}{123}}
%e A326961   {{3}{12}{13}{23}}  {{1}{12}{13}{23}{123}}  {{1}{2}{3}{12}{13}{23}{123}}
%t A326961 tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
%t A326961 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]
%Y A326961 Covering set-systems are A003465.
%Y A326961 Covering T_0 set-systems are A059201.
%Y A326961 The version with empty edges allowed is A326960.
%Y A326961 The non-covering version is A326965.
%Y A326961 Covering set-systems whose dual is a weak antichain are A326970.
%Y A326961 The unlabeled version is A326974.
%Y A326961 The BII-numbers of T_1 set-systems are A326979.
%Y A326961 Cf. A058891, A059052, A059523, A323818, A326972, A326973, A326976, A326977.
%K A326961 nonn
%O A326961 0,3
%A A326961 _Gus Wiseman_, Aug 12 2019