This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326961 #10 Aug 12 2019 22:31:35 %S A326961 1,1,2,36,19020,2010231696,9219217412568364176, %T A326961 170141181796805105960861096082778425120, %U A326961 57896044618658097536026644159052312977171804852352892309392604715987334365792 %N A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems. %C A326961 Same as A059523 except with a(1) = 1 instead of 2. %C A326961 Alternatively, these are set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of sets, none of which is a subset of any other. %F A326961 Inverse binomial transform of A326965. %e A326961 The a(3) = 36 set-systems: %e A326961 {{1}{2}{3}} {{12}{13}{23}{123}} {{2}{3}{12}{13}{23}} %e A326961 {{12}{13}{23}} {{1}{2}{3}{12}{13}} {{2}{3}{12}{13}{123}} %e A326961 {{1}{2}{3}{12}} {{1}{2}{3}{12}{23}} {{2}{12}{13}{23}{123}} %e A326961 {{1}{2}{3}{13}} {{1}{2}{3}{13}{23}} {{3}{12}{13}{23}{123}} %e A326961 {{1}{2}{3}{23}} {{1}{2}{12}{13}{23}} {{1}{2}{3}{12}{13}{23}} %e A326961 {{1}{2}{13}{23}} {{1}{2}{3}{12}{123}} {{1}{2}{3}{12}{13}{123}} %e A326961 {{1}{2}{3}{123}} {{1}{2}{3}{13}{123}} {{1}{2}{3}{12}{23}{123}} %e A326961 {{1}{3}{12}{23}} {{1}{2}{3}{23}{123}} {{1}{2}{3}{13}{23}{123}} %e A326961 {{2}{3}{12}{13}} {{1}{3}{12}{13}{23}} {{1}{2}{12}{13}{23}{123}} %e A326961 {{1}{12}{13}{23}} {{1}{2}{13}{23}{123}} {{1}{3}{12}{13}{23}{123}} %e A326961 {{2}{12}{13}{23}} {{1}{3}{12}{23}{123}} {{2}{3}{12}{13}{23}{123}} %e A326961 {{3}{12}{13}{23}} {{1}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}{123}} %t A326961 tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds; %t A326961 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}] %Y A326961 Covering set-systems are A003465. %Y A326961 Covering T_0 set-systems are A059201. %Y A326961 The version with empty edges allowed is A326960. %Y A326961 The non-covering version is A326965. %Y A326961 Covering set-systems whose dual is a weak antichain are A326970. %Y A326961 The unlabeled version is A326974. %Y A326961 The BII-numbers of T_1 set-systems are A326979. %Y A326961 Cf. A058891, A059052, A059523, A323818, A326972, A326973, A326976, A326977. %K A326961 nonn %O A326961 0,3 %A A326961 _Gus Wiseman_, Aug 12 2019