This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326962 #33 Dec 17 2020 14:56:28 %S A326962 1,1,2,2,1,5,12,18,20,18,15,11,6,3,1,15,64,166,332,566,864,1214,1596, %T A326962 1975,2320,2600,2780,2842,2780,2600,2320,1979,1608,1238,908,626,404, %U A326962 246,136,69,32,12,4,1,52,340,1315,3895,9770,21848,44880,86275,157140 %N A326962 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns. %C A326962 T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero. %H A326962 Alois P. Heinz, <a href="/A326962/b326962.txt">Columns k = 0..10, flattened</a> %H A326962 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %F A326962 Sum_{k=1..n} k * T(n,k) = A327115(n). %F A326962 T(n*2^(n-1),n) = T(A001787(n),n) = 1. %F A326962 T(n*2^(n-1)-1,n) = n for n >= 2. %e A326962 T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c. %e A326962 Triangle T(n,k) begins: %e A326962 1; %e A326962 1; %e A326962 2; %e A326962 2, 5; %e A326962 1, 12, 15; %e A326962 18, 64, 52; %e A326962 20, 166, 340, 203; %e A326962 18, 332, 1315, 1866, 877; %e A326962 15, 566, 3895, 9930, 10710, 4140; %e A326962 11, 864, 9770, 39960, 74438, 64520, 21147; %e A326962 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975; %e A326962 ... %p A326962 C:= binomial: %p A326962 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A326962 b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i))) %p A326962 end: %p A326962 T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): %p A326962 seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5); %t A326962 c = Binomial; %t A326962 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]]; %t A326962 T[n_, k_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}]; %t A326962 Table[Table[T[n, k], {n, k, k 2^(k-1)}], {k, 0, 5}] // Flatten (* _Jean-François Alcover_, Dec 17 2020, after _Alois P. Heinz_ *) %Y A326962 Main diagonal gives A000110. %Y A326962 Row sums give A116539. %Y A326962 Column sums give A003465. %Y A326962 Cf. A001787, A255903, A326914 (this triangle read by rows), A327115, A327116, A327117. %K A326962 nonn,tabf %O A326962 0,3 %A A326962 _Alois P. Heinz_, Sep 13 2019