This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326964 #8 Aug 12 2019 03:24:25 %S A326964 1,2,7,112,32253,2147316942,9223372023968335715, %T A326964 170141183460469231667123699322514272668, %U A326964 5789604461865809771178549250434395393752402807429031284280914691514037561273 %N A326964 Number of connected set-systems covering a subset of {1..n}. %C A326964 A set-system is a finite set of finite nonempty sets. %F A326964 Binomial transform of A323818. %e A326964 The a(0) = 1 through a(2) = 7 set-systems: %e A326964 {} {} {} %e A326964 {{1}} {{1}} %e A326964 {{2}} %e A326964 {{1,2}} %e A326964 {{1},{1,2}} %e A326964 {{2},{1,2}} %e A326964 {{1},{2},{1,2}} %t A326964 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326964 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[csm[#]]<=1&]],{n,0,4}] %Y A326964 Covering sets of subsets are A000371. %Y A326964 Connected graphs are A001187. %Y A326964 The unlabeled version is A309667. %Y A326964 The BII-numbers of connected set-systems are A326749. %Y A326964 The covering case is A323818. %Y A326964 Cf. A007718, A048143, A058891, A092918, A300913, A304716, A326866, A326948. %K A326964 nonn %O A326964 0,2 %A A326964 _Gus Wiseman_, Aug 10 2019