cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326966 BII-numbers of set-systems whose dual is a weak antichain.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 18, 25, 27, 30, 31, 32, 33, 42, 43, 45, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 64, 75, 76, 79, 82, 91, 94, 95, 97, 107, 109, 111, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 135
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all set-systems whose dual is a weak antichain together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  25: {{1},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
		

Crossrefs

Set-systems whose dual is a weak antichain are counted by A326968, with covering case A326970, unlabeled version A326971, and unlabeled covering version A326973.
BII-numbers of set-systems whose dual is strict (T_0) are A326947.
BII-numbers of set-systems whose dual is a (strict) antichain (T_1) are A326979.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],SubsetQ]&]