This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326970 #9 Aug 12 2019 22:32:17 %S A326970 1,1,3,43,19251 %N A326970 Number of set-systems covering n vertices whose dual is a weak antichain. %C A326970 A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edges consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other. %F A326970 Inverse binomial transform of A326968. %e A326970 The a(3) = 43 set-systems: %e A326970 {123} {1}{23} {1}{2}{3} {1}{2}{3}{12} %e A326970 {2}{13} {12}{13}{23} {1}{2}{3}{13} %e A326970 {3}{12} {1}{23}{123} {1}{2}{3}{23} %e A326970 {2}{13}{123} {1}{2}{13}{23} %e A326970 {3}{12}{123} {1}{2}{3}{123} %e A326970 {1}{3}{12}{23} %e A326970 {2}{3}{12}{13} %e A326970 {1}{12}{13}{23} %e A326970 {2}{12}{13}{23} %e A326970 {3}{12}{13}{23} %e A326970 {12}{13}{23}{123} %e A326970 . %e A326970 {1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123} %e A326970 {1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123} %e A326970 {1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123} %e A326970 {1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123} %e A326970 {1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123} %e A326970 {1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123} %e A326970 {1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123} %e A326970 {1}{3}{12}{13}{23} %e A326970 {2}{3}{12}{13}{23} %e A326970 {1}{2}{13}{23}{123} %e A326970 {1}{3}{12}{23}{123} %e A326970 {2}{3}{12}{13}{123} %e A326970 {1}{12}{13}{23}{123} %e A326970 {2}{12}{13}{23}{123} %e A326970 {3}{12}{13}{23}{123} %t A326970 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326970 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326970 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}] %Y A326970 Covering set-systems are A003465. %Y A326970 Covering set-systems whose dual is strict are A059201. %Y A326970 The T_1 case is A326961. %Y A326970 The BII-numbers of these set-systems are A326966. %Y A326970 The non-covering case is A326968. %Y A326970 The unlabeled version is A326973. %Y A326970 Cf. A006126, A059052, A059523, A326950, A326960, A326965, A326969, A326971, A326974, A326975, A326978. %K A326970 nonn,more %O A326970 0,3 %A A326970 _Gus Wiseman_, Aug 10 2019