cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326973 Number of unlabeled set-systems covering n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 1, 3, 19, 1243
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems:
  {}  {{1}}  {{1,2}}          {{1,2,3}}
             {{1},{2}}        {{1},{2,3}}
             {{1},{2},{1,2}}  {{1},{2},{3}}
                              {{1,2},{1,3},{2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3}}
                              {{1},{2},{1,3},{2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{1,3},{2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covering set-systems are A055621.
The labeled version is A326970.
The non-covering case is A326971 (partial sums).
The case that is also T_0 is the T_1 case A326974.