A326975 Number of factorizations of n into factors > 1 whose dual is a weak antichain.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 3, 2, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 11, 2, 5, 1, 2, 2, 5, 1, 12, 1, 2, 2, 2, 2, 5, 1, 5, 5, 2, 1, 4, 2, 2
Offset: 1
Keywords
Examples
The a(36) = 9 factorizations: (36) (4*9) (6*6) (2*18) (3*12) (2*2*9) (2*3*6) (3*3*4) (2*2*3*3)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[facs[n],stableQ[dual[primeMS/@#],submultQ]&]],{n,100}]
Comments