This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326976 #7 Aug 13 2019 13:20:08 %S A326976 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,5,1,1, %T A326976 1,2,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,7,1,1,1,1, %U A326976 1,1,1,5,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1 %N A326976 Number of factorizations of n into factors > 1 such that every prime factor of n is the GCD of some subset of the factors. %e A326976 The a(72) = 5 factorizations: %e A326976 (3*4*6) %e A326976 (2*3*12) %e A326976 (2*2*3*6) %e A326976 (2*3*3*4) %e A326976 (2*2*2*3*3) %t A326976 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A326976 Table[Length[Select[facs[n],n==1||Union[Select[GCD@@@Rest[Subsets[#]],PrimeQ]]==First/@FactorInteger[n]&]], %t A326976 {n,100}] %Y A326976 Factorizations whose dual is a weak antichain are A326975. %Y A326976 T_1 factorizations (whose dual is a strict antichain) are A327012. %Y A326976 T_0 factorizations (whose dual is strict) are A316978. %Y A326976 Cf. A001055, A326947, A326965, A326972, A326974, A326977, A326979. %K A326976 nonn %O A326976 1,8 %A A326976 _Gus Wiseman_, Aug 13 2019