cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326976 Number of factorizations of n into factors > 1 such that every prime factor of n is the GCD of some subset of the factors.

This page as a plain text file.
%I A326976 #7 Aug 13 2019 13:20:08
%S A326976 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,5,1,1,
%T A326976 1,2,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,7,1,1,1,1,
%U A326976 1,1,1,5,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1
%N A326976 Number of factorizations of n into factors > 1 such that every prime factor of n is the GCD of some subset of the factors.
%e A326976 The a(72) = 5 factorizations:
%e A326976   (3*4*6)
%e A326976   (2*3*12)
%e A326976   (2*2*3*6)
%e A326976   (2*3*3*4)
%e A326976   (2*2*2*3*3)
%t A326976 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A326976 Table[Length[Select[facs[n],n==1||Union[Select[GCD@@@Rest[Subsets[#]],PrimeQ]]==First/@FactorInteger[n]&]],
%t A326976 {n,100}]
%Y A326976 Factorizations whose dual is a weak antichain are A326975.
%Y A326976 T_1 factorizations (whose dual is a strict antichain) are A327012.
%Y A326976 T_0 factorizations (whose dual is strict) are A316978.
%Y A326976 Cf. A001055, A326947, A326965, A326972, A326974, A326977, A326979.
%K A326976 nonn
%O A326976 1,8
%A A326976 _Gus Wiseman_, Aug 13 2019