This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326977 #6 Aug 13 2019 13:20:15 %S A326977 1,1,2,3,5,7,10,14,20,27,36,49,64,85,109,141,181,234,294,375,470,589, %T A326977 733,917,1131,1401,1720,2113,2581,3153,3833,4655,5631,6801,8192,9849, %U A326977 11816,14148,16899,20153,23990,28503,33815,40038,47330,55858,65841,77475 %N A326977 Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a (strict) antichain, also called T_1 integer partitions. %C A326977 The dual of a multiset partition has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of multisets, none of which is a submultiset of any other. %e A326977 The a(0) = 1 through a(7) = 14 partitions: %e A326977 () (1) (2) (3) (4) (5) (33) (7) %e A326977 (11) (21) (22) (32) (42) (43) %e A326977 (111) (31) (41) (51) (52) %e A326977 (211) (221) (222) (322) %e A326977 (1111) (311) (321) (331) %e A326977 (2111) (411) (421) %e A326977 (11111) (2211) (511) %e A326977 (3111) (2221) %e A326977 (21111) (3211) %e A326977 (111111) (4111) %e A326977 (22111) %e A326977 (31111) %e A326977 (211111) %e A326977 (1111111) %t A326977 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] %t A326977 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326977 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326977 submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; %t A326977 Table[Length[Select[IntegerPartitions[n],UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#],submultQ]&]],{n,0,30}] %Y A326977 T_0 integer partitions are A319564. %Y A326977 Set-systems whose dual is a (strict) antichain are A326965. %Y A326977 The version where the dual is a weak antichain is A326978. %Y A326977 T_1 factorizations (whose dual is a strict antichain) are A327012. %Y A326977 Cf. A000041, A319728, A326961, A326974, A326976, A326979. %K A326977 nonn %O A326977 0,3 %A A326977 _Gus Wiseman_, Aug 13 2019