This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326978 #4 Aug 13 2019 13:20:22 %S A326978 1,1,2,3,5,7,11,15,21,28,38,52,68,91,116,149,191,249,311,399,498,622, %T A326978 773,971,1193,1478,1811,2222,2709,3311,4021,4882,5894,7110,8554,10273, %U A326978 12312,14734,17578,20941,24905,29570,35056,41475,48983,57752,68025,79988 %N A326978 Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a weak antichain. %C A326978 The dual of a multiset partition has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. %C A326978 A weak antichain is a multiset of multisets, none of which is a proper submultiset of any other. %e A326978 The a(0) = 1 through a(7) = 15 partitions: %e A326978 () (1) (2) (3) (4) (5) (6) (7) %e A326978 (11) (21) (22) (32) (33) (43) %e A326978 (111) (31) (41) (42) (52) %e A326978 (211) (221) (51) (61) %e A326978 (1111) (311) (222) (322) %e A326978 (2111) (321) (331) %e A326978 (11111) (411) (421) %e A326978 (2211) (511) %e A326978 (3111) (2221) %e A326978 (21111) (3211) %e A326978 (111111) (4111) %e A326978 (22111) %e A326978 (31111) %e A326978 (211111) %e A326978 (1111111) %t A326978 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326978 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A326978 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326978 submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; %t A326978 Table[Length[Select[IntegerPartitions[n],stableQ[dual[primeMS/@#],submultQ]&]],{n,0,30}] %Y A326978 Set-systems whose dual is a weak antichain are A326968. %Y A326978 Factorizations whose dual is a weak antichain are A326975. %Y A326978 The version where the dual is a strict antichain is A326977. %Y A326978 Cf. A000041, A319564, A319728, A326966, A326969, A326970, A326971, A326973. %K A326978 nonn %O A326978 0,3 %A A326978 _Gus Wiseman_, Aug 13 2019