This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326981 #17 Nov 17 2020 04:45:01 %S A326981 0,0,0,0,1,1,3,4,9,13,22,31,51,70,105,145,210,283,398,530,726,958, %T A326981 1283,1673,2212,2854,3714,4756,6119,7764,9893,12457,15728,19674,24636, %U A326981 30615,38079,47034,58109,71396,87692,107179,130943,159278,193619,234486,283720 %N A326981 Total number of composite parts in all partitions of n. %F A326981 a(n) = A144119(n) - A000070(n-1), n >= 1. %F A326981 a(n) = A006128(n) - A326957(n). %e A326981 For n = 6 we have: %e A326981 -------------------------------------- %e A326981 . Number of %e A326981 Partitions composite %e A326981 of 6 parts %e A326981 -------------------------------------- %e A326981 6 .......................... 1 %e A326981 3 + 3 ...................... 0 %e A326981 4 + 2 ...................... 1 %e A326981 2 + 2 + 2 .................. 0 %e A326981 5 + 1 ...................... 0 %e A326981 3 + 2 + 1 .................. 0 %e A326981 4 + 1 + 1 .................. 1 %e A326981 2 + 2 + 1 + 1 .............. 0 %e A326981 3 + 1 + 1 + 1 .............. 0 %e A326981 2 + 1 + 1 + 1 + 1 .......... 0 %e A326981 1 + 1 + 1 + 1 + 1 + 1 ...... 0 %e A326981 ------------------------------------ %e A326981 Total ...................... 3 %e A326981 So a(6) = 3. %p A326981 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+ %p A326981 (p-> p+[0, `if`(isprime(i), 0, p[1])])(b(n-i, min(n-i, i)))) %p A326981 end: %p A326981 a:= n-> b(n$2)[2]: %p A326981 seq(a(n), n=0..50); # _Alois P. Heinz_, Aug 13 2019 %t A326981 b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, 0}, b[n, i-1] + # + {0, If[PrimeQ[i], 0, #[[1]]]}&[b[n-i, Min[n-i, i]]]]; %t A326981 a[n_] := b[n, n][[2]]; %t A326981 a /@ Range[0, 50] (* _Jean-François Alcover_, Nov 17 2020, after _Alois P. Heinz_ *) %Y A326981 Cf. A000041, A002808, A006128, A037032, A144115, A144116, A144119, A326957, A326982. %K A326981 nonn %O A326981 0,7 %A A326981 _Omar E. Pol_, Aug 09 2019