cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326981 Total number of composite parts in all partitions of n.

This page as a plain text file.
%I A326981 #17 Nov 17 2020 04:45:01
%S A326981 0,0,0,0,1,1,3,4,9,13,22,31,51,70,105,145,210,283,398,530,726,958,
%T A326981 1283,1673,2212,2854,3714,4756,6119,7764,9893,12457,15728,19674,24636,
%U A326981 30615,38079,47034,58109,71396,87692,107179,130943,159278,193619,234486,283720
%N A326981 Total number of composite parts in all partitions of n.
%F A326981 a(n) = A144119(n) - A000070(n-1), n >= 1.
%F A326981 a(n) = A006128(n) - A326957(n).
%e A326981 For n = 6 we have:
%e A326981 --------------------------------------
%e A326981 .                        Number of
%e A326981 Partitions               composite
%e A326981 of 6                       parts
%e A326981 --------------------------------------
%e A326981 6 .......................... 1
%e A326981 3 + 3 ...................... 0
%e A326981 4 + 2 ...................... 1
%e A326981 2 + 2 + 2 .................. 0
%e A326981 5 + 1 ...................... 0
%e A326981 3 + 2 + 1 .................. 0
%e A326981 4 + 1 + 1 .................. 1
%e A326981 2 + 2 + 1 + 1 .............. 0
%e A326981 3 + 1 + 1 + 1 .............. 0
%e A326981 2 + 1 + 1 + 1 + 1 .......... 0
%e A326981 1 + 1 + 1 + 1 + 1 + 1 ...... 0
%e A326981 ------------------------------------
%e A326981 Total ...................... 3
%e A326981 So a(6) = 3.
%p A326981 b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0], b(n, i-1)+
%p A326981       (p-> p+[0, `if`(isprime(i), 0, p[1])])(b(n-i, min(n-i, i))))
%p A326981     end:
%p A326981 a:= n-> b(n$2)[2]:
%p A326981 seq(a(n), n=0..50);  # _Alois P. Heinz_, Aug 13 2019
%t A326981 b[n_, i_] := b[n, i] = If[n==0 || i==1, {1, 0}, b[n, i-1] + # + {0, If[PrimeQ[i], 0, #[[1]]]}&[b[n-i, Min[n-i, i]]]];
%t A326981 a[n_] := b[n, n][[2]];
%t A326981 a /@ Range[0, 50] (* _Jean-François Alcover_, Nov 17 2020, after _Alois P. Heinz_ *)
%Y A326981 Cf. A000041, A002808, A006128, A037032, A144115, A144116, A144119, A326957, A326982.
%K A326981 nonn
%O A326981 0,7
%A A326981 _Omar E. Pol_, Aug 09 2019