This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327001 #14 Sep 27 2022 08:46:00 %S A327001 1,1,1,1,1,2,1,1,2,4,1,1,4,5,8,1,1,11,31,15,16,1,1,36,365,379,52,32,1, %T A327001 1,127,6271,25323,6556,203,64,1,1,463,129130,3086331,3068521,150349, %U A327001 877,128,1,1,1717,2877421,512251515,3309362716,583027547,4373461,4140,256 %N A327001 Generalized Bell numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0. %F A327001 A(n, k) = Sum_{j=0..k-1} binomial(n*k - 1, n*j) * A(n, j) for k > 0, A(n, 0) = 1. %e A327001 [n\k][0 1 2 3 4 5 6] %e A327001 [ - ] ----------------------------------------------------- %e A327001 [ 0 ] 1, 1, 2, 4, 8, 16, 32 A011782 %e A327001 [ 1 ] 1, 1, 2, 5, 15, 52, 203 A000110 %e A327001 [ 2 ] 1, 1, 4, 31, 379, 6556, 150349 A005046 %e A327001 [ 3 ] 1, 1, 11, 365, 25323, 3068521, 583027547 A291973 %e A327001 [ 4 ] 1, 1, 36, 6271, 3086331, 3309362716, 6626013560301 A291975 %e A327001 A260878, A326998, %e A327001 Formatted as a triangle: %e A327001 [1] %e A327001 [1, 1] %e A327001 [1, 1, 2] %e A327001 [1, 1, 2, 4] %e A327001 [1, 1, 4, 5, 8] %e A327001 [1, 1, 11, 31, 15, 16] %e A327001 [1, 1, 36, 365, 379, 52, 32] %e A327001 [1, 1, 127, 6271, 25323, 6556, 203, 64] %p A327001 A327001 := proc(n, k) option remember; if k = 0 then return 1 fi; %p A327001 add(binomial(n*k - 1, n*j) * A327001(n, j), j = 0..k-1) end: %p A327001 for n from 0 to 6 do seq(A327001(n, k), k=0..6) od; # row-wise %t A327001 A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k-1, n*j]*A[n, j], {j, 0, k-1}]]; %t A327001 Table[A[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 27 2022 *) %Y A327001 A260876 (variant based on shapes). %Y A327001 Rows include: A011782, A000110, A005046, A291973, A291975. %Y A327001 Columns include: A260878, A326998. %Y A327001 Cf. A327000. %K A327001 nonn,tabl %O A327001 0,6 %A A327001 _Peter Luschny_, Aug 12 2019