cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327011 Number of unlabeled sets of subsets covering n vertices where every vertex is the unique common element of some subset of the edges, also called unlabeled covering T_1 sets of subsets.

Original entry on oeis.org

2, 2, 4, 32, 2424
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Alternatively, these are unlabeled sets of subsets covering n vertices whose dual is a (strict) antichain. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of subsets where no edge is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(2) = 4 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Unlabeled covering sets of subsets are A003181.
The same with T_0 instead of T_1 is A326942.
The non-covering version is A326951 (partial sums).
The labeled version is A326960.
The case without empty edges is A326974.

Formula

a(n) = A326974(n) / 2.
a(n > 0) = A326951(n) - A326951(n - 1).