This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327012 #4 Aug 15 2019 07:30:03 %S A327012 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1,1, %T A327012 1,7,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,1,1,2, %U A327012 1,1,1,12,1,1,2,2,1,1,1,5,5,1,1,2,1,1 %N A327012 Number of factorizations of n into factors > 1 whose dual is a (strict) antichain. %C A327012 Differs from A322453 at 36, 72, 100, ... %C A327012 The dual of a multiset system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The dual of a factorization is the dual of the multiset partition obtained by replacing each factor with its multiset of prime indices. %C A327012 An antichain is a set of multisets, none of which is a submultiset of any other. %e A327012 The a(72) = 12 factorizations: %e A327012 (8*9) %e A327012 (3*24) %e A327012 (4*18) %e A327012 (2*4*9) %e A327012 (3*3*8) %e A327012 (3*4*6) %e A327012 (2*2*18) %e A327012 (2*3*12) %e A327012 (2*2*2*9) %e A327012 (2*2*3*6) %e A327012 (2*3*3*4) %e A327012 (2*2*2*3*3) %t A327012 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327012 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A327012 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A327012 submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; %t A327012 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327012 Table[Length[Select[facs[n],UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#],submultQ]&]],{n,100}] %Y A327012 Set-systems whose dual is a (strict) antichain are A326965. %Y A327012 The version where the dual is a weak antichain is A326975. %Y A327012 Partitions whose dual is a (strict) antichain are A326977. %Y A327012 Cf. A001055, A316978, A326961, A326974, A326976, A326979. %K A327012 nonn %O A327012 1,4 %A A327012 _Gus Wiseman_, Aug 13 2019