cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327018 Number of non-isomorphic set-systems of weight n whose dual is a weak antichain.

This page as a plain text file.
%I A327018 #7 Aug 15 2019 07:30:24
%S A327018 1,1,2,3,6,8,17,24,51,80,180
%N A327018 Number of non-isomorphic set-systems of weight n whose dual is a weak antichain.
%C A327018 A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.
%e A327018 Non-isomorphic representatives of the a(1) = 1 through a(6) = 17 multiset partitions:
%e A327018   {1}  {12}    {123}      {1234}        {12345}          {123456}
%e A327018        {1}{2}  {1}{23}    {1}{234}      {1}{2345}        {1}{23456}
%e A327018                {1}{2}{3}  {12}{34}      {12}{345}        {12}{3456}
%e A327018                           {1}{2}{12}    {1}{2}{345}      {123}{456}
%e A327018                           {1}{2}{34}    {1}{23}{45}      {12}{13}{23}
%e A327018                           {1}{2}{3}{4}  {1}{2}{3}{23}    {1}{23}{123}
%e A327018                                         {1}{2}{3}{45}    {1}{2}{3456}
%e A327018                                         {1}{2}{3}{4}{5}  {1}{23}{456}
%e A327018                                                          {12}{34}{56}
%e A327018                                                          {1}{2}{13}{23}
%e A327018                                                          {1}{2}{3}{123}
%e A327018                                                          {1}{2}{3}{456}
%e A327018                                                          {1}{2}{34}{56}
%e A327018                                                          {3}{4}{12}{34}
%e A327018                                                          {1}{2}{3}{4}{34}
%e A327018                                                          {1}{2}{3}{4}{56}
%e A327018                                                          {1}{2}{3}{4}{5}{6}
%Y A327018 Cf. A007716, A283877, A293993, A319643, A319721, A326966, A326968, A326970, A326972, A326973, A326974, A326975, A326978, A327017, A327019.
%K A327018 nonn,more
%O A327018 0,3
%A A327018 _Gus Wiseman_, Aug 15 2019