This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327018 #7 Aug 15 2019 07:30:24 %S A327018 1,1,2,3,6,8,17,24,51,80,180 %N A327018 Number of non-isomorphic set-systems of weight n whose dual is a weak antichain. %C A327018 A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other. %e A327018 Non-isomorphic representatives of the a(1) = 1 through a(6) = 17 multiset partitions: %e A327018 {1} {12} {123} {1234} {12345} {123456} %e A327018 {1}{2} {1}{23} {1}{234} {1}{2345} {1}{23456} %e A327018 {1}{2}{3} {12}{34} {12}{345} {12}{3456} %e A327018 {1}{2}{12} {1}{2}{345} {123}{456} %e A327018 {1}{2}{34} {1}{23}{45} {12}{13}{23} %e A327018 {1}{2}{3}{4} {1}{2}{3}{23} {1}{23}{123} %e A327018 {1}{2}{3}{45} {1}{2}{3456} %e A327018 {1}{2}{3}{4}{5} {1}{23}{456} %e A327018 {12}{34}{56} %e A327018 {1}{2}{13}{23} %e A327018 {1}{2}{3}{123} %e A327018 {1}{2}{3}{456} %e A327018 {1}{2}{34}{56} %e A327018 {3}{4}{12}{34} %e A327018 {1}{2}{3}{4}{34} %e A327018 {1}{2}{3}{4}{56} %e A327018 {1}{2}{3}{4}{5}{6} %Y A327018 Cf. A007716, A283877, A293993, A319643, A319721, A326966, A326968, A326970, A326972, A326973, A326974, A326975, A326978, A327017, A327019. %K A327018 nonn,more %O A327018 0,3 %A A327018 _Gus Wiseman_, Aug 15 2019