This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327020 #6 Aug 18 2019 11:27:51 %S A327020 1,1,1,2,17,1451,3741198 %N A327020 Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting). %C A327020 A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges, The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains with union {1..n} whose dual is pairwise intersecting. %F A327020 Inverse binomial transform of A327057. %e A327020 The a(0) = 1 through a(4) = 17 antichains: %e A327020 {} {{1}} {{12}} {{123}} {{1234}} %e A327020 {{12}{13}{23}} {{12}{134}{234}} %e A327020 {{13}{124}{234}} %e A327020 {{14}{123}{234}} %e A327020 {{23}{124}{134}} %e A327020 {{24}{123}{134}} %e A327020 {{34}{123}{124}} %e A327020 {{123}{124}{134}} %e A327020 {{123}{124}{234}} %e A327020 {{123}{134}{234}} %e A327020 {{124}{134}{234}} %e A327020 {{12}{13}{14}{234}} %e A327020 {{12}{23}{24}{134}} %e A327020 {{13}{23}{34}{124}} %e A327020 {{14}{24}{34}{123}} %e A327020 {{123}{124}{134}{234}} %e A327020 {{12}{13}{14}{23}{24}{34}} %t A327020 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A327020 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A327020 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327020 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}] %Y A327020 Covering, intersecting antichains are A305844. %Y A327020 Covering, T1 antichains are A319639. %Y A327020 Cointersecting set-systems are A327039. %Y A327020 Covering, cointersecting set-systems are A327040. %Y A327020 Covering, cointersecting set-systems are A327051. %Y A327020 The non-covering version is A327057. %Y A327020 Covering, intersecting, T1 set-systems are A327058. %Y A327020 Unlabeled cointersecting antichains of multisets are A327060. %Y A327020 Cf. A003465, A305843, A319765, A326853, A327037, A327038, A327053. %K A327020 nonn,more %O A327020 0,4 %A A327020 _Gus Wiseman_, Aug 17 2019