cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327027 T(n, k) = (1/n) * Sum_{d|n} phi(d) * A241171(n/d, k) for n >= 1, T(0, k) = 0^k. Triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 10, 30, 0, 1, 33, 315, 630, 0, 1, 102, 2646, 15120, 22680, 0, 1, 348, 21135, 263340, 1039500, 1247400, 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200, 0, 1, 4113, 1333080, 61757010, 871620750, 4937832900, 11918907000, 10216206000
Offset: 0

Views

Author

Peter Luschny, Aug 20 2019

Keywords

Comments

We assume A241171 extended to its (0, 0)-based form.

Examples

			[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 10,   30;
[4] 0, 1, 33,   315,    630;
[5] 0, 1, 102,  2646,   15120,   22680;
[6] 0, 1, 348,  21135,  263340,  1039500,  1247400;
[7] 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200;
		

Crossrefs

Cf. A327021 (main diagonal), A327026 (row sums), A241171, A327029.

Programs

  • Maple
    A327027 := (n, k)-> `if`(n=0, 1, (1/n)*add(phi(d)*A241171(n/d, k), d=divisors(n))):
    seq(seq(A327027(n,k), k=0..n), n=0..6);
  • Mathematica
    A327027[0,  k_] := 1;
    A327027[n_, k_] := DivisorSum[n, EulerPhi[#] A241171[n/#, k] &] / n;
    Table[A327027[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
  • Sage
    # uses[DivisorTriangle from A327029, A241171]
    DivisorTriangle(euler_phi, A241171, 8, lambda n: 1/n if n > 1 else 1)