This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327028 #19 Mar 24 2020 09:00:55 %S A327028 1,0,1,0,2,2,0,3,2,6,0,4,6,6,24,0,5,4,12,24,120,0,6,12,24,48,120,720, %T A327028 0,7,6,24,72,240,720,5040,0,8,16,36,144,360,1440,5040,40320,0,9,12,54, %U A327028 144,600,2160,10080,40320,362880 %N A327028 T(n, k) = k! * Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, k) = 0^k. Triangle read by rows for 0 <= k <= n. %e A327028 [0] 1 %e A327028 [1] 0, 1 %e A327028 [2] 0, 2, 2 %e A327028 [3] 0, 3, 2, 6 %e A327028 [4] 0, 4, 6, 6, 24 %e A327028 [5] 0, 5, 4, 12, 24, 120 %e A327028 [6] 0, 6, 12, 24, 48, 120, 720 %e A327028 [7] 0, 7, 6, 24, 72, 240, 720, 5040 %e A327028 [8] 0, 8, 16, 36, 144, 360, 1440, 5040, 40320 %e A327028 [9] 0, 9, 12, 54, 144, 600, 2160, 10080, 40320, 362880 %p A327028 A327028 := (n,k) -> `if`(n=0, 1, k!*add(phi(d)*A008284(n/d, k), d = divisors(n))): %p A327028 seq(seq(A327028(n, k), k=0..n), n=0..9); %t A327028 A327028[0 , k_] := 1; %t A327028 A327028[n_, k_] := DivisorSum[n, EulerPhi[#] A318144[n/#, k] (-1)^k &]; %t A327028 Table[A327028[n, k], {n, 0, 9}, {k, 0, n}] // Flatten %o A327028 (SageMath) # uses[DivisorTriangle from A327029] %o A327028 from sage.combinat.partition import number_of_partitions_length %o A327028 def A318144Abs(n, k): return number_of_partitions_length(n, k)*factorial(k) %o A327028 DivisorTriangle(euler_phi, A318144Abs, 10) %Y A327028 Cf. A008284, A318144, A000142 (main diagonal), A327025 (row sums), A327029. %K A327028 nonn,tabl %O A327028 0,5 %A A327028 _Peter Luschny_, Aug 20 2019