This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327031 #10 Aug 27 2019 00:45:40 %S A327031 0,0,0,0,1,0,0,2,2,0,0,3,5,3,0,0,4,8,9,4,0,0,5,12,16,14,5,0,0,6,14,27, %T A327031 28,20,6,0,0,7,21,33,53,45,27,7,0,0,8,20,56,72,95,68,35,8,0,0,9,28,54, %U A327031 132,146,159,98,44,9,0,0,10,30,84,144,285,276,252,136,54,10,0 %N A327031 A(n, k) = Sum_{d|n} phi(d)*T(n/d, k) if n > 0 and A(0, k) = 0 where T(n, k) = binomial(n+k-1, n). Square array read by ascending antidiagonals, with n, k >= 0. %e A327031 [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004 %e A327031 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... A001477 %e A327031 [2] 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, ... A000096 %e A327031 [3] 0, 3, 8, 16, 28, 45, 68, 98, 136, 183, ... A255993 (conj.) %e A327031 [4] 0, 4, 12, 27, 53, 95, 159, 252, 382, 558, ... A327032 %e A327031 [5] 0, 5, 14, 33, 72, 146, 276, 490, 824, 1323, ... %e A327031 [6] 0, 6, 21, 56, 132, 285, 572, 1078, 1924, 3276, ... %e A327031 [7] 0, 7, 20, 54, 144, 360, 828, 1758, 3480, 6489, ... %e A327031 [8] 0, 8, 28, 84, 236, 615, 1479, 3297, 6869, 13491, ... %e A327031 [9] 0, 9, 30, 93, 284, 815, 2150, 5215, 11728, 24694, ... %e A327031 A209295, %p A327031 DivisorSquareArray := proc(p, T, len) local row: %p A327031 row := (n, k) -> add(p(d)*T(n/d, k), d = numtheory:-divisors(n)): %p A327031 seq(lprint(seq(add(j, j=row(n, k)), k=0..len-1)), n=0..len-1) end: %p A327031 DivisorSquareArray(numtheory:-phi, (n, k) -> binomial(n+k-1, n), 9); %o A327031 (SageMath) %o A327031 def DivisorSquareArray(p, T, Len): %o A327031 D = [[0]*Len] %o A327031 for n in (1..Len-1): %o A327031 r = lambda k: [p(d)*T(n//d, k) for d in divisors(n)] %o A327031 L = [sum(r(k)) for k in (0..Len-1)] %o A327031 D.append(L) %o A327031 return D %o A327031 def T(n, k): return binomial(n + k - 1, n) %o A327031 DivisorSquareArray(euler_phi, T, 10) %Y A327031 Cf. A000004 (n=0), A001477 (n=1), A000096 (n=2), A255993 (n=3 conj.), A327032 (n=4), A209295, A097805. %K A327031 nonn,tabl %O A327031 0,8 %A A327031 _Peter Luschny_, Aug 25 2019