cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327032 a(n) = T(n, 4) with T(n, k) = Sum_{d|k} phi(d)*binomial(n - 1 + k/d, k/d).

This page as a plain text file.
%I A327032 #21 Oct 21 2022 21:26:06
%S A327032 0,4,12,27,53,95,159,252,382,558,790,1089,1467,1937,2513,3210,4044,
%T A327032 5032,6192,7543,9105,10899,12947,15272,17898,20850,24154,27837,31927,
%U A327032 36453,41445,46934,52952,59532,66708,74515,82989,92167,102087,112788,124310,136694
%N A327032 a(n) = T(n, 4) with T(n, k) = Sum_{d|k} phi(d)*binomial(n - 1 + k/d, k/d).
%H A327032 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A327032 G.f.: ((2*x^2 - 3*x + 2)*(x - 2)*x)/(x - 1)^5.
%F A327032 a(n) = ((7*n^2 - 14*n - 9)*a(n-1) - 2*(2*n^2 + n - 3)*a(n-2))/(3*(n^2 - 4*n + 3)) for n >= 4.
%F A327032 a(n) = n*(n*(n*(n + 6) + 23) + 66)/24.
%p A327032 a := n -> n*(n*(n*(n + 6) + 23) + 66)/24:
%p A327032 seq(a(n), n=0..41);
%t A327032 Table[(66n+23n^2+6n^3+n^4)/24,{n,0,50}] (* _Harvey P. Dale_, Mar 10 2020 *)
%o A327032 (PARI) a(n)=n*(n*(n*(n+6)+23)+66)/24 \\ _Charles R Greathouse IV_, Oct 21 2022
%Y A327032 Cf. A327031 (square array), A000004 (k=0), A001477 (k=1), A000096 (k=2), A255993 (k=3 conj.), this sequence (k=4).
%K A327032 nonn,easy
%O A327032 0,2
%A A327032 _Peter Luschny_, Aug 25 2019