cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327037 Number of pairwise intersecting set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

This page as a plain text file.
%I A327037 #9 Aug 18 2024 19:04:26
%S A327037 1,1,3,21,913,1183295,909142733955,291200434282476769116160
%N A327037 Number of pairwise intersecting set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
%C A327037 A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting, covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.
%F A327037 Inverse binomial transform of A327038.
%e A327037 The a(0) = 1 through a(3) = 21 set-systems:
%e A327037   {}  {{1}}  {{1,2}}      {{1,2,3}}
%e A327037              {{1},{1,2}}  {{1},{1,2,3}}
%e A327037              {{2},{1,2}}  {{2},{1,2,3}}
%e A327037                           {{3},{1,2,3}}
%e A327037                           {{1,2},{1,2,3}}
%e A327037                           {{1,3},{1,2,3}}
%e A327037                           {{2,3},{1,2,3}}
%e A327037                           {{1},{1,2},{1,2,3}}
%e A327037                           {{1},{1,3},{1,2,3}}
%e A327037                           {{1,2},{1,3},{2,3}}
%e A327037                           {{2},{1,2},{1,2,3}}
%e A327037                           {{2},{2,3},{1,2,3}}
%e A327037                           {{3},{1,3},{1,2,3}}
%e A327037                           {{3},{2,3},{1,2,3}}
%e A327037                           {{1,2},{1,3},{1,2,3}}
%e A327037                           {{1,2},{2,3},{1,2,3}}
%e A327037                           {{1,3},{2,3},{1,2,3}}
%e A327037                           {{1},{1,2},{1,3},{1,2,3}}
%e A327037                           {{2},{1,2},{2,3},{1,2,3}}
%e A327037                           {{3},{1,3},{2,3},{1,2,3}}
%e A327037                           {{1,2},{1,3},{2,3},{1,2,3}}
%t A327037 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
%t A327037 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327037 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A327037 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
%Y A327037 Intersecting covering set-systems are A305843.
%Y A327037 The unlabeled multiset partition version is A319765.
%Y A327037 The case where the dual is strict is A319774.
%Y A327037 The BII-numbers of these set-systems are A326912.
%Y A327037 The non-covering version is A327038.
%Y A327037 Cointersectng covering set-systems are A327040.
%Y A327037 Cf. A003465, A319767, A326853, A326854, A326910.
%K A327037 nonn,more
%O A327037 0,3
%A A327037 _Gus Wiseman_, Aug 17 2019
%E A327037 a(6)-a(7) from _Christian Sievers_, Aug 18 2024