This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327038 #9 Aug 18 2024 19:04:46 %S A327038 1,2,6,34,1020,1188106,909149847892,291200434288840793135801 %N A327038 Number of pairwise intersecting set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting). %C A327038 A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts pairwise intersecting set-systems that are cointersecting, meaning their dual is pairwise intersecting. %F A327038 Binomial transform of A327037. %e A327038 The a(0) = 1 through a(2) = 6 set-systems: %e A327038 {} {} {} %e A327038 {{1}} {{1}} %e A327038 {{2}} %e A327038 {{1,2}} %e A327038 {{1},{1,2}} %e A327038 {{2},{1,2}} %e A327038 The a(3) = 34 set-systems: %e A327038 {} {{1}} {{1}{12}} {{1}{12}{123}} {{1}{12}{13}{123}} %e A327038 {{2}} {{1}{13}} {{1}{13}{123}} {{2}{12}{23}{123}} %e A327038 {{3}} {{2}{12}} {{12}{13}{23}} {{3}{13}{23}{123}} %e A327038 {{12}} {{2}{23}} {{2}{12}{123}} {{12}{13}{23}{123}} %e A327038 {{13}} {{3}{13}} {{2}{23}{123}} %e A327038 {{23}} {{3}{23}} {{3}{13}{123}} %e A327038 {{123}} {{1}{123}} {{3}{23}{123}} %e A327038 {{2}{123}} {{12}{13}{123}} %e A327038 {{3}{123}} {{12}{23}{123}} %e A327038 {{12}{123}} {{13}{23}{123}} %e A327038 {{13}{123}} %e A327038 {{23}{123}} %t A327038 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A327038 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A327038 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327038 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}] %Y A327038 Intersecting set-systems are A051185. %Y A327038 The unlabeled multiset partition version is A319765. %Y A327038 The BII-numbers of these set-systems are A326912. %Y A327038 The covering case is A327037. %Y A327038 Cointersecting set-systems are A327039. %Y A327038 The case where the dual is strict is A327040. %Y A327038 Cf. A058891, A319767, A319774, A326854, A327052. %K A327038 nonn,more %O A327038 0,2 %A A327038 _Gus Wiseman_, Aug 17 2019 %E A327038 a(6)-a(7) from _Christian Sievers_, Aug 18 2024