cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327040 Number of set-systems covering n vertices, every two of which appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 4, 72, 25104, 2077196832, 9221293229809363008, 170141182628636920877978969957369949312
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 4 set-systems:
  {}  {{1}}  {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The unlabeled multiset partition version is A319752.
The BII-numbers of these set-systems are A326853.
The antichain case is A327020.
The pairwise intersecting case is A327037.
The non-covering version is A327039.
The case where the dual is strict is A327053.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Inverse binomial transform of A327039.

Extensions

a(5)-a(7) from Christian Sievers, Oct 22 2023